Suppr超能文献

基于迭代门控图卷积网络的脑电图数据中癫痫发作分类

Classification of epileptic seizures in EEG data based on iterative gated graph convolution network.

作者信息

Hu Yue, Liu Jian, Sun Rencheng, Yu Yongqiang, Sui Yi

机构信息

College of Computer Science and Technology, University of Qingdao, Qingdao, China.

Yunxiao Road Outpatient Department, Qingdao Stomatological Hospital, Qingdao, China.

出版信息

Front Comput Neurosci. 2024 Aug 29;18:1454529. doi: 10.3389/fncom.2024.1454529. eCollection 2024.

Abstract

INTRODUCTION

The automatic and precise classification of epilepsy types using electroencephalogram (EEG) data promises significant advancements in diagnosing patients with epilepsy. However, the intricate interplay among multiple electrode signals in EEG data poses challenges. Recently, Graph Convolutional Neural Networks (GCN) have shown strength in analyzing EEG data due to their capability to describe complex relationships among different EEG regions. Nevertheless, several challenges remain: (1) GCN typically rely on predefined or prior graph topologies, which may not accurately reflect the complex correlations between brain regions. (2) GCN struggle to capture the long-temporal dependencies inherent in EEG signals, limiting their ability to effectively extract temporal features.

METHODS

To address these challenges, we propose an innovative epileptic seizure classification model based on an Iterative Gated Graph Convolutional Network (IGGCN). For the epileptic seizure classification task, the original EEG graph structure is iteratively optimized using a multi-head attention mechanism during training, rather than relying on a static, predefined prior graph. We introduce Gated Graph Neural Networks (GGNN) to enhance the model's capacity to capture long-term dependencies in EEG series between brain regions. Additionally, Focal Loss is employed to alleviate the imbalance caused by the scarcity of epileptic EEG data.

RESULTS

Our model was evaluated on the Temple University Hospital EEG Seizure Corpus (TUSZ) for classifying four types of epileptic seizures. The results are outstanding, achieving an average F1 score of 91.5% and an average Recall of 91.8%, showing a substantial improvement over current state-of-the-art models.

DISCUSSION

Ablation experiments verified the efficacy of iterative graph optimization and gated graph convolution. The optimized graph structure significantly differs from the predefined EEG topology. Gated graph convolutions demonstrate superior performance in capturing the long-term dependencies in EEG series. Additionally, Focal Loss outperforms other commonly used loss functions in the TUSZ classification task.

摘要

引言

利用脑电图(EEG)数据对癫痫类型进行自动精确分类有望在癫痫患者诊断方面取得重大进展。然而,EEG数据中多个电极信号之间复杂的相互作用带来了挑战。最近,图卷积神经网络(GCN)因其能够描述不同EEG区域之间的复杂关系,在分析EEG数据方面展现出优势。尽管如此,仍存在一些挑战:(1)GCN通常依赖预定义或先验图拓扑结构,这可能无法准确反映脑区之间的复杂相关性。(2)GCN难以捕捉EEG信号中固有的长期依赖性,限制了其有效提取时间特征的能力。

方法

为应对这些挑战,我们提出了一种基于迭代门控图卷积网络(IGGCN)的创新型癫痫发作分类模型。对于癫痫发作分类任务,在训练过程中使用多头注意力机制对原始EEG图结构进行迭代优化,而不是依赖静态的预定义先验图。我们引入门控图神经网络(GGNN)以增强模型捕捉脑区之间EEG序列长期依赖性的能力。此外,采用焦点损失来缓解癫痫EEG数据稀缺导致的不平衡问题。

结果

我们的模型在坦普尔大学医院EEG癫痫发作语料库(TUSZ)上进行了评估,用于对四种类型的癫痫发作进行分类。结果非常出色,平均F1分数达到91.5%,平均召回率达到91.8%,相较于当前的先进模型有显著提升。

讨论

消融实验验证了迭代图优化和门控图卷积的有效性。优化后的图结构与预定义的EEG拓扑结构有显著差异。门控图卷积在捕捉EEG序列的长期依赖性方面表现出卓越性能。此外,在TUSZ分类任务中,焦点损失优于其他常用的损失函数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1de2/11390464/530bf1989f74/fncom-18-1454529-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验