Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, M5G 1L7, Ontario, Canada.
Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, M5G 1L7, Ontario, Canada.
Theranostics. 2024 Jan 1;14(3):973-987. doi: 10.7150/thno.90246. eCollection 2024.
: Multimodal imaging provides important pharmacokinetic and dosimetry information during nanomedicine development and optimization. However, accurate quantitation is time-consuming, resource intensive, and requires anatomical expertise. : We present NanoMASK: a 3D U-Net adapted deep learning tool capable of rapid, automatic organ segmentation of multimodal imaging data that can output key clinical dosimetry metrics without manual intervention. This model was trained on 355 manually-contoured PET/CT data volumes of mice injected with a variety of nanomaterials and imaged over 48 hours. : NanoMASK produced 3-dimensional contours of the heart, lungs, liver, spleen, kidneys, and tumor with high volumetric accuracy (pan-organ average %DSC of 92.5). Pharmacokinetic metrics including %ID/cc, %ID, and SUV achieved correlation coefficients exceeding R = 0.987 and relative mean errors below 0.2%. NanoMASK was applied to novel datasets of lipid nanoparticles and antibody-drug conjugates with a minimal drop in accuracy, illustrating its generalizability to different classes of nanomedicines. Furthermore, 20 additional auto-segmentation models were developed using training data subsets based on image modality, experimental imaging timepoint, and tumor status. These were used to explore the fundamental biases and dependencies of auto-segmentation models built on a 3D U-Net architecture, revealing significant differential impacts on organ segmentation accuracy. : NanoMASK is an easy-to-use, adaptable tool for improving accuracy and throughput in imaging-based pharmacokinetic studies of nanomedicine. It has been made publicly available to all readers for automatic segmentation and pharmacokinetic analysis across a diverse array of nanoparticles, expediting agent development.
多模态成像在纳米医学的开发和优化过程中提供了重要的药代动力学和剂量学信息。然而,准确的定量分析既耗时又耗费资源,且需要解剖学专业知识。
我们提出了 NanoMASK:一种 3D U-Net 适应的深度学习工具,能够快速、自动地对多模态成像数据进行器官分割,无需手动干预即可输出关键的临床剂量学指标。该模型是在 355 个经过手动轮廓绘制的注射了各种纳米材料的小鼠 PET/CT 数据体积上进行训练的,这些数据在 48 小时内进行了成像。
NanoMASK 生成了心脏、肺、肝、脾、肾和肿瘤的 3 维轮廓,具有很高的体积准确性(多器官平均 %DSC 为 92.5)。药代动力学指标,包括 %ID/cc、%ID 和 SUV,达到了相关系数超过 R = 0.987 和相对平均误差低于 0.2%的水平。NanoMASK 被应用于新型脂质纳米颗粒和抗体药物偶联物数据集,其准确性略有下降,这说明了它对不同类别纳米药物的泛化能力。此外,还根据图像模态、实验成像时间点和肿瘤状态,使用训练数据子集开发了 20 个额外的自动分割模型。这些模型用于探索基于 3D U-Net 架构构建的自动分割模型的基本偏差和依赖性,揭示了对器官分割准确性的显著差异影响。
NanoMASK 是一种易于使用的工具,可用于提高基于成像的纳米医学药代动力学研究的准确性和通量。它已经向所有读者公开,用于各种纳米颗粒的自动分割和药代动力学分析,加速了药物的开发。