Huang Wei, Seo Jeong Ah, Canavan Mark P, Gambardella Pietro, Stepanow Sebastian
Department of Materials, ETH Zurich, 8093 Zurich, Switzerland.
Nanoscale. 2024 Feb 8;16(6):3160-3165. doi: 10.1039/d3nr03070a.
Li intercalation is commonly used to enhance the carrier density in epitaxial graphene and mitigate coupling to the substrate. So far, the understanding of the intercalation process, particularly how Li penetrates different layers above the substrate, and its impact on electron transport remains incomplete. Here, we report different phases of Li intercalation and their kinetic processes in epitaxial mono- and bilayer graphene grown on SiC. The distinct doping effects of each intercalation phase are characterized using scanning tunneling spectroscopy. Furthermore, changes in the local conduction regimes are directly mapped by scanning tunneling potentiometry and attributed to different charge transfer states of the intercalated Li. The stable intercalation marked by the formation of Li-Si bonds leads to a significant 56% reduction in sheet resistance of the resulting quasi-free bilayer graphene, as compared to the pristine monolayer graphene.
锂嵌入通常用于提高外延石墨烯中的载流子密度,并减轻与衬底的耦合。到目前为止,对嵌入过程的理解,特别是锂如何穿透衬底上方的不同层,以及其对电子输运的影响仍不完整。在这里,我们报告了在碳化硅上生长的外延单层和双层石墨烯中锂嵌入的不同阶段及其动力学过程。使用扫描隧道光谱对每个嵌入阶段的不同掺杂效应进行了表征。此外,通过扫描隧道电位法直接绘制了局部传导状态的变化,并将其归因于嵌入锂的不同电荷转移状态。与原始单层石墨烯相比,以锂-硅键形成为标志的稳定嵌入导致所得准自由双层石墨烯的薄层电阻显著降低了56%。