IV. Physikalisches Institut - Solids and Nanostructures, University of Goettingen, 37077 Göttingen, Germany.
Institut für Theoretische Physik, University of Goettingen, 37077 Göttingen, Germany.
Nat Commun. 2017 May 4;8:15283. doi: 10.1038/ncomms15283.
Transport experiments in strong magnetic fields show a variety of fascinating phenomena like the quantum Hall effect, weak localization or the giant magnetoresistance. Often they originate from the atomic-scale structure inaccessible to macroscopic magnetotransport experiments. To connect spatial information with transport properties, various advanced scanning probe methods have been developed. Capable of ultimate spatial resolution, scanning tunnelling potentiometry has been used to determine the resistance of atomic-scale defects such as steps and interfaces. Here we combine this technique with magnetic fields and thus transfer magnetotransport experiments to the atomic scale. Monitoring the local voltage drop in epitaxial graphene, we show how the magnetic field controls the electric field components. We find that scattering processes at localized defects are independent of the strong magnetic field while monolayer and bilayer graphene sheets show a locally varying conductivity and charge carrier concentration differing from the macroscopic average.
在强磁场中进行的输运实验展示了各种引人入胜的现象,如量子霍尔效应、弱局域化或巨磁电阻。这些现象通常源于宏观磁输运实验无法触及的原子尺度结构。为了将空间信息与输运性质联系起来,已经开发了各种先进的扫描探针方法。扫描隧道电位法具有最高的空间分辨率,已被用于确定原子尺度缺陷(如台阶和界面)的电阻。在这里,我们将这项技术与磁场结合起来,从而将磁输运实验转移到原子尺度。通过监测外延石墨烯中的局部电压降,我们展示了磁场如何控制电场分量。我们发现,局域缺陷处的散射过程与强磁场无关,而单层和双层石墨烯片表现出局部变化的电导率和载流子浓度,与宏观平均值不同。