Suppr超能文献

自动检测和分割非小细胞肺癌 CT 图像。

Automated detection and segmentation of non-small cell lung cancer computed tomography images.

机构信息

The D-Lab, Department of Precision Medicine, GROW- School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands.

Department of Radiology and Nuclear Medicine, GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands.

出版信息

Nat Commun. 2022 Jun 14;13(1):3423. doi: 10.1038/s41467-022-30841-3.

Abstract

Detection and segmentation of abnormalities on medical images is highly important for patient management including diagnosis, radiotherapy, response evaluation, as well as for quantitative image research. We present a fully automated pipeline for the detection and volumetric segmentation of non-small cell lung cancer (NSCLC) developed and validated on 1328 thoracic CT scans from 8 institutions. Along with quantitative performance detailed by image slice thickness, tumor size, image interpretation difficulty, and tumor location, we report an in-silico prospective clinical trial, where we show that the proposed method is faster and more reproducible compared to the experts. Moreover, we demonstrate that on average, radiologists & radiation oncologists preferred automatic segmentations in 56% of the cases. Additionally, we evaluate the prognostic power of the automatic contours by applying RECIST criteria and measuring the tumor volumes. Segmentations by our method stratified patients into low and high survival groups with higher significance compared to those methods based on manual contours.

摘要

医学图像上的异常检测和分割对于包括诊断、放疗、疗效评估以及定量图像研究在内的患者管理非常重要。我们提出了一种完全自动化的流程,用于检测和对 8 个机构的 1328 例胸部 CT 扫描进行容积分割,用于非小细胞肺癌(NSCLC)。除了详细介绍图像切片厚度、肿瘤大小、图像解释难度和肿瘤位置等定量性能外,我们还报告了一项模拟前瞻性临床试验,结果表明与专家相比,该方法速度更快,重复性更好。此外,我们证明,在平均情况下,放射科医生和肿瘤放疗科医生在 56%的情况下更喜欢自动分割。此外,我们还通过应用 RECIST 标准和测量肿瘤体积来评估自动轮廓的预后能力。与基于手动轮廓的方法相比,我们的方法对患者进行的分割将其分为低生存组和高生存组,具有更高的显著性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e9a/9198097/e4ddd887463f/41467_2022_30841_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验