Suppr超能文献

基于 MIMIC-IV 数据库的机器学习方法预测重症胰腺炎合并急性肾损伤的模型

Predictive model of acute kidney injury in critically ill patients with acute pancreatitis: a machine learning approach using the MIMIC-IV database.

机构信息

Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China.

出版信息

Ren Fail. 2024 Dec;46(1):2303395. doi: 10.1080/0886022X.2024.2303395. Epub 2024 Jan 24.

Abstract

BACKGROUND

Acute kidney injury (AKI) is a common and serious complication in severe acute pancreatitis (AP), associated with high mortality rate. Early detection of AKI is crucial for prompt intervention and better outcomes. This study aims to develop and validate predictive models using machine learning (ML) to identify the onset of AKI in patients with AP.

METHODS

Patients with AP were extracted from the MIMIC-IV database. We performed feature selection using the random forest method. Model construction involved an ensemble of ML, including random forest (RF), support vector machine (SVM), k-nearest neighbors (KNN), naive Bayes (NB), neural network (NNET), generalized linear model (GLM), and gradient boosting machine (GBM). The best-performing model was fine-tuned and evaluated through split-set validation.

RESULTS

We analyzed 1,235 critically ill patients with AP, of which 667 cases (54%) experienced AKI during hospitalization. We used 49 variables to construct models, including GBM, GLM, KNN, NB, NNET, RF, and SVM. The AUC for these models was 0.814 (95% CI, 0.763 to 0.865), 0.812 (95% CI, 0.769 to 0.854), 0.671 (95% CI, 0.622 to 0.719), 0.812 (95% CI, 0.780 to 0.864), 0.688 (95% CI, 0.624 to 0.752), 0.809 (95% CI, 0.766 to 0.851), and 0.810 (95% CI, 0.763 to 0.856) respectively. In the test set, the GBM's performance was consistent, with an area of 0.867 (95% CI, 0.831 to 0.903).

CONCLUSIONS

The GBM model's precision is crucial, aiding clinicians in identifying high-risk patients and enabling timely interventions to reduce mortality rates in critical care.

摘要

背景

急性肾损伤(AKI)是重症急性胰腺炎(AP)的常见且严重的并发症,与高死亡率相关。早期发现 AKI 对于及时干预和改善预后至关重要。本研究旨在使用机器学习(ML)开发和验证预测模型,以识别 AP 患者 AKI 的发生。

方法

从 MIMIC-IV 数据库中提取 AP 患者。我们使用随机森林方法进行特征选择。模型构建涉及 ML 的集成,包括随机森林(RF)、支持向量机(SVM)、k-最近邻(KNN)、朴素贝叶斯(NB)、神经网络(NNET)、广义线性模型(GLM)和梯度提升机(GBM)。通过拆分集验证对表现最佳的模型进行微调并进行评估。

结果

我们分析了 1235 例危重症 AP 患者,其中 667 例(54%)在住院期间发生 AKI。我们使用 49 个变量构建模型,包括 GBM、GLM、KNN、NB、NNET、RF 和 SVM。这些模型的 AUC 为 0.814(95%CI,0.763 至 0.865)、0.812(95%CI,0.769 至 0.854)、0.671(95%CI,0.622 至 0.719)、0.812(95%CI,0.780 至 0.864)、0.688(95%CI,0.624 至 0.752)、0.809(95%CI,0.766 至 0.851)和 0.810(95%CI,0.763 至 0.856)。在测试集中,GBM 的性能一致,面积为 0.867(95%CI,0.831 至 0.903)。

结论

GBM 模型的精度至关重要,有助于临床医生识别高危患者,并能够及时干预,降低重症监护死亡率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4183/10810629/cc9e733e5bbc/IRNF_A_2303395_F0001_B.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验