Suppr超能文献

基于血清代谢物和机器学习对银屑病关节炎患者进行疾病活动状态分类。

Classifying patients with psoriatic arthritis according to their disease activity status using serum metabolites and machine learning.

机构信息

Division of Rheumatology, Psoriatic Arthritis Program, Schroeder Arthritis Institute, University Health Network, Toronto, Canada.

Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.

出版信息

Metabolomics. 2024 Jan 24;20(1):17. doi: 10.1007/s11306-023-02079-7.

Abstract

INTRODUCTION

Psoriatic arthritis (PsA) is a heterogeneous inflammatory arthritis, affecting approximately a quarter of patients with psoriasis. Accurate assessment of disease activity is difficult. There are currently no clinically validated biomarkers to stratify PsA patients based on their disease activity, which is important for improving clinical management.

OBJECTIVES

To identify metabolites capable of classifying patients with PsA according to their disease activity.

METHODS

An in-house solid-phase microextraction (SPME)-liquid chromatography-high resolution mass spectrometry (LC-HRMS) method for lipid analysis was used to analyze serum samples obtained from patients classified as having low (n = 134), moderate (n = 134) or high (n = 104) disease activity, based on psoriatic arthritis disease activity scores (PASDAS). Metabolite data were analyzed using eight machine learning methods to predict disease activity levels. Top performing methods were selected based on area under the curve (AUC) and significance.

RESULTS

The best model for predicting high disease activity from low disease activity achieved AUC 0.818. The best model for predicting high disease activity from moderate disease activity achieved AUC 0.74. The best model for classifying low disease activity from moderate and high disease activity achieved AUC 0.765. Compounds confirmed by MS/MS validation included metabolites from diverse compound classes such as sphingolipids, phosphatidylcholines and carboxylic acids.

CONCLUSION

Several lipids and other metabolites when combined in classifying models predict high disease activity from both low and moderate disease activity. Lipids of key interest included lysophosphatidylcholine and sphingomyelin. Quantitative MS assays based on selected reaction monitoring, are required to quantify the candidate biomarkers identified.

摘要

简介

银屑病关节炎(PsA)是一种异质性炎症性关节炎,影响大约四分之一的银屑病患者。准确评估疾病活动度具有挑战性。目前尚无临床验证的生物标志物可根据疾病活动度对 PsA 患者进行分层,这对于改善临床管理至关重要。

目的

确定能够根据疾病活动度对 PsA 患者进行分类的代谢物。

方法

采用内建固相微萃取(SPME)-液相色谱-高分辨率质谱(LC-HRMS)法分析脂质,分析根据银屑病关节炎疾病活动评分(PASDAS)分类为低(n=134)、中(n=134)或高(n=104)疾病活动度的患者的血清样本。使用八种机器学习方法分析代谢物数据,以预测疾病活动水平。根据曲线下面积(AUC)和显著性选择表现最佳的方法。

结果

从低疾病活动度预测高疾病活动度的最佳模型 AUC 为 0.818。从中度疾病活动度预测高疾病活动度的最佳模型 AUC 为 0.74。从中度和高度疾病活动度分类低疾病活动度的最佳模型 AUC 为 0.765。通过 MS/MS 验证确认的化合物包括来自鞘脂、磷脂和羧酸等多种化合物类别的代谢物。

结论

当结合分类模型时,几种脂质和其他代谢物可预测高疾病活动度,包括低疾病活动度和中度疾病活动度。有兴趣的脂质包括溶血磷脂酰胆碱和神经鞘磷脂。需要基于选择反应监测的定量 MS 测定法来定量鉴定出的候选生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fea2/10810020/951a1947b19c/11306_2023_2079_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验