Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Bochum, Germany; email:
Annu Rev Plant Biol. 2024 Jul;75(1):27-65. doi: 10.1146/annurev-arplant-070623-105324. Epub 2024 Jul 2.
One of life's decisive innovations was to harness the catalytic power of metals for cellular chemistry. With life's expansion, global atmospheric and biogeochemical cycles underwent dramatic changes. Although initially harmful, they permitted the evolution of multicellularity and the colonization of land. In land plants as primary producers, metal homeostasis faces heightened demands, in part because soil is a challenging environment for nutrient balancing. To avoid both nutrient metal limitation and metal toxicity, plants must maintain the homeostasis of metals within tighter limits than the homeostasis of other minerals. This review describes the present model of protein metalation and sketches its transfer from unicellular organisms to land plants as complex multicellular organisms. The inseparable connection between metal and redox homeostasis increasingly draws our attention to more general regulatory roles of metals. Mineral co-option, the use of nutrient or other metals for functions other than nutrition, is an emerging concept beyond that of nutritional immunity.
生命的决定性创新之一是利用金属的催化能力来进行细胞化学。随着生命的扩展,全球大气和生物地球化学循环发生了巨大变化。虽然最初是有害的,但它们允许多细胞生物的进化和陆地的殖民化。在作为初级生产者的陆地植物中,金属内稳面临更高的需求,部分原因是土壤是一个具有挑战性的养分平衡环境。为了避免营养金属限制和金属毒性,植物必须将金属的内稳维持在比其他矿物质更严格的限度内。本综述描述了目前的蛋白质金属化模型,并概述了它从单细胞生物向复杂多细胞生物陆地植物的转移。金属和氧化还原内稳之间不可分割的联系使我们越来越关注金属的更普遍的调节作用。除了营养免疫之外,矿物质的共选择(即利用营养或其他金属来实现营养以外的功能)是一个新兴概念。