Suppr超能文献

机器学习确定了细菌在不同碳源上生长的关键代谢反应。

Machine learning identifies key metabolic reactions in bacterial growth on different carbon sources.

机构信息

Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.

出版信息

Mol Syst Biol. 2024 Mar;20(3):170-186. doi: 10.1038/s44320-024-00017-w. Epub 2024 Jan 30.

Abstract

Carbon source-dependent control of bacterial growth is fundamental to bacterial physiology and survival. However, pinpointing the metabolic steps important for cell growth is challenging due to the complexity of cellular networks. Here, the elastic net model and multilayer perception model that integrated genome-wide gene-deletion data and simulated flux distributions were constructed to identify metabolic reactions beneficial or detrimental to Escherichia coli grown on 30 different carbon sources. Both models outperformed traditional in silico methods by identifying not just essential reactions but also nonessential ones that promote growth. They successfully predicted metabolic reactions beneficial to cell growth, with high convergence between the models. The models revealed that biosynthetic pathways generally promote growth across various carbon sources, whereas the impact of energy-generating pathways varies with the carbon source. Intriguing predictions were experimentally validated for findings beyond experimental training data and the impact of various carbon sources on the glyoxylate shunt, pyruvate dehydrogenase reaction, and redundant purine biosynthesis reactions. These highlight the practical significance and predictive power of the models for understanding and engineering microbial metabolism.

摘要

碳源依赖性控制是细菌生理学和生存的基础。然而,由于细胞网络的复杂性,确定对细胞生长重要的代谢步骤具有挑战性。在这里,构建了弹性网络模型和多层感知模型,该模型整合了全基因组基因缺失数据和模拟通量分布,以鉴定在 30 种不同碳源上生长的大肠杆菌有益或有害的代谢反应。这两种模型都通过识别不仅是必需反应而且是促进生长的非必需反应,优于传统的计算方法。它们成功地预测了有利于细胞生长的代谢反应,模型之间具有很高的收敛性。这些模型表明,生物合成途径通常在各种碳源上促进生长,而能量生成途径的影响则随碳源而变化。对于超出实验训练数据的发现以及各种碳源对乙醛酸支路、丙酮酸脱氢酶反应和冗余嘌呤生物合成反应的影响,这些模型进行了有趣的预测,并进行了实验验证。这些突出了模型在理解和工程微生物代谢方面的实际意义和预测能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6176/10912204/a850d6099688/44320_2024_17_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验