文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

成骨人类 MSC 衍生的细胞外囊泡调节 MSC 活性和成骨分化,并在大鼠颅骨缺损模型中促进骨再生。

Osteogenic human MSC-derived extracellular vesicles regulate MSC activity and osteogenic differentiation and promote bone regeneration in a rat calvarial defect model.

机构信息

Department of Clinical Dentistry, Faculty of Medicine, Center for Translational Oral Research (TOR), University of Bergen, 5009, Bergen, Norway.

Department of Immunology and Transfusion Medicine, Haukeland University Hospital, 5021, Bergen, Norway.

出版信息

Stem Cell Res Ther. 2024 Feb 7;15(1):33. doi: 10.1186/s13287-024-03639-x.


DOI:10.1186/s13287-024-03639-x
PMID:38321490
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10848378/
Abstract

BACKGROUND: There is growing evidence that extracellular vesicles (EVs) play a crucial role in the paracrine mechanisms of transplanted human mesenchymal stem cells (hMSCs). Little is known, however, about the influence of microenvironmental stimuli on the osteogenic effects of EVs. This study aimed to investigate the properties and functions of EVs derived from undifferentiated hMSC (Naïve-EVs) and hMSC during the early stage of osteogenesis (Osteo-EVs). A further aim was to assess the osteoinductive potential of Osteo-EVs for bone regeneration in rat calvarial defects. METHODS: EVs from both groups were isolated using size-exclusion chromatography and characterized by size distribution, morphology, flow cytometry analysis and proteome profiling. The effects of EVs (10 µg/ml) on the proliferation, migration, and osteogenic differentiation of cultured hMSC were evaluated. Osteo-EVs (50 µg) or serum-free medium (SFM, control) were combined with collagen membrane scaffold (MEM) to repair critical-sized calvarial bone defects in male Lewis rats and the efficacy was assessed using µCT, histology and histomorphometry. RESULTS: Although Osteo- and Naïve-EVs have similar characteristics, proteomic analysis revealed an enrichment of bone-related proteins in Osteo-EVs. Both groups enhance cultured hMSC proliferation and migration, but Osteo-EVs demonstrate greater efficacy in promoting in vitro osteogenic differentiation, as evidenced by increased expression of osteogenesis-related genes, and higher calcium deposition. In rat calvarial defects, MEM with Osteo-EVs led to greater and more consistent bone regeneration than MEM loaded with SFM. CONCLUSIONS: This study discloses differences in the protein profile and functional effects of EVs obtained from naïve hMSC and hMSC during the early stage of osteogenesis, using different methods. The significant protein profile and cellular function of EVs derived from hMSC during the early stage of osteogenesis were further verified by a calvarial bone defect model, emphasizing the importance of using differentiated MSC to produce EVs for bone therapeutics.

摘要

背景:越来越多的证据表明细胞外囊泡(EVs)在移植的人骨髓间充质干细胞(hMSC)的旁分泌机制中发挥着关键作用。然而,对于微环境刺激对 EVs 成骨作用的影响知之甚少。本研究旨在探讨未分化 hMSC 来源的 EVs(Naïve-EVs)和 hMSC 成骨早期(Osteo-EVs)的特性和功能。另一个目的是评估 Osteo-EVs 对大鼠颅骨缺损骨再生的成骨潜力。

方法:使用排阻色谱法分离两组 EVs,并通过粒径分布、形态、流式细胞术分析和蛋白质组谱进行表征。评估 EVs(10μg/ml)对培养的 hMSC 增殖、迁移和成骨分化的影响。将 Osteo-EVs(50μg)或无血清培养基(SFM,对照)与胶原膜支架(MEM)结合,修复雄性 Lewis 大鼠临界尺寸颅骨骨缺损,并使用 µCT、组织学和组织形态计量学评估疗效。

结果:尽管 Osteo- 和 Naïve-EVs 具有相似的特征,但蛋白质组学分析显示 Osteo-EVs 中富含与骨骼相关的蛋白质。两组均增强了培养的 hMSC 的增殖和迁移,但 Osteo-EVs 在促进体外成骨分化方面更有效,表现为成骨相关基因表达增加和钙沉积增加。在大鼠颅骨缺损中,与加载 SFM 的 MEM 相比,加载 Osteo-EVs 的 MEM 导致更大且更一致的骨再生。

结论:本研究使用不同方法揭示了来自未分化 hMSC 和 hMSC 成骨早期的 EVs 在蛋白质谱和功能效应上的差异。通过颅骨骨缺损模型进一步验证了 hMSC 成骨早期衍生的 EVs 的显著蛋白质谱和细胞功能,强调了使用分化的 MSC 来产生 EVs 进行骨治疗的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bd8/10848378/220fb1c06c1d/13287_2024_3639_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bd8/10848378/c757cbc29aee/13287_2024_3639_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bd8/10848378/ecbc8b58f7c1/13287_2024_3639_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bd8/10848378/da1e47bd7b90/13287_2024_3639_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bd8/10848378/6b5d1e2abf60/13287_2024_3639_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bd8/10848378/15c4fa94f864/13287_2024_3639_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bd8/10848378/220fb1c06c1d/13287_2024_3639_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bd8/10848378/c757cbc29aee/13287_2024_3639_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bd8/10848378/ecbc8b58f7c1/13287_2024_3639_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bd8/10848378/da1e47bd7b90/13287_2024_3639_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bd8/10848378/6b5d1e2abf60/13287_2024_3639_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bd8/10848378/15c4fa94f864/13287_2024_3639_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bd8/10848378/220fb1c06c1d/13287_2024_3639_Fig6_HTML.jpg

相似文献

[1]
Osteogenic human MSC-derived extracellular vesicles regulate MSC activity and osteogenic differentiation and promote bone regeneration in a rat calvarial defect model.

Stem Cell Res Ther. 2024-2-7

[2]
Human Infrapatellar Fat Pad Mesenchymal Stem Cell-derived Extracellular Vesicles Purified by Anion Exchange Chromatography Suppress Osteoarthritis Progression in a Mouse Model.

Clin Orthop Relat Res. 2024-7-1

[3]
Mineralized osteoblast-derived exosomes and 3D-printed ceramic-based scaffolds for enhanced bone healing: A preclinical exploration.

Acta Biomater. 2025-6-15

[4]
Large-scale bioreactor production of extracellular vesicles from mesenchymal stromal cells for treatment of acute radiation syndrome.

Stem Cell Res Ther. 2024-3-13

[5]
Transcriptomic and proteomic profiles of fetal versus adult mesenchymal stromal cells and mesenchymal stromal cell-derived extracellular vesicles.

Stem Cell Res Ther. 2024-3-13

[6]
Role of Extracellular Vesicles of Stem Cells from Human Exfoliated Deciduous Teeth in Osteogenesis.

Int J Mol Sci. 2025-6-18

[7]
An In Vivo Assessment of Different Mesenchymal Stromal Cell Tissue Types and Their Differentiation State on a Shape Memory Polymer Scaffold for Bone Regeneration.

J Biomed Mater Res B Appl Biomater. 2024-12

[8]
Bone Mesenchymal Stromal Cell-Derived Extracellular Vesicles Protect Articular Cartilage Through Regulating tRF-Gln-TTG-019/UBL3.

Mediators Inflamm. 2025-6-13

[9]
Clinical Scale MSC-Derived Extracellular Vesicles Enhance Poststroke Neuroplasticity in Rodents and Non-Human Primates.

J Extracell Vesicles. 2025-6

[10]
Oncostatin-M functionalized cryogel microspheres for promoting diabetic bone defects regeneration.

J Orthop Translat. 2025-6-20

引用本文的文献

[1]
Exosomes derived from umbilical cord mesenchymal stem cells alleviate jaw bone marrow mesenchymal stem cells senescence and restore osteogenic differentiation potential.

Stem Cell Res Ther. 2025-8-29

[2]
Immunomodulatory and Regenerative Functions of MSC-Derived Exosomes in Bone Repair.

Bioengineering (Basel). 2025-8-5

[3]
Enhancing bone tissue engineering with polyacrylonitrile electrospun scaffolds and graphene quantum dots: A comprehensive approach to regenerative medicine.

Bioimpacts. 2025-7-1

[4]
Extracellular Vesicle-Integrated Biomaterials in Bone Tissue Engineering Applications: Current Progress and Future Perspectives.

Int J Nanomedicine. 2025-6-17

[5]
Quantifying extracellular vesicle heterogeneity: the effect of process conditions on protein cargo for skin therapy.

Stem Cell Res Ther. 2025-5-4

[6]
The bone microenvironment: new insights into the role of stem cells and cell communication in bone regeneration.

Stem Cell Res Ther. 2025-4-12

[7]
Therapeutic role of hucMSC-sEV-enriched miR-13896 in cisplatin-induced acute kidney injury through M2 macrophage polarization.

Cell Biol Toxicol. 2025-2-24

[8]
Exploring the Potential of in Managing Bone Loss: Insights from Preclinical Studies.

Int J Med Sci. 2025-1-21

[9]
Proteomic Analysis of Human Serum Proteins Adsorbed onto Collagen Barrier Membranes.

J Funct Biomater. 2024-10-9

[10]
Isolation and characterization of bone mesenchymal cell small extracellular vesicles using a novel mouse model.

J Bone Miner Res. 2024-10-29

本文引用的文献

[1]
Proteomic Analysis of Mesenchymal Stromal Cells Secretome in Comparison to Leukocyte- and Platelet-Rich Fibrin.

Int J Mol Sci. 2023-8-22

[2]
Functionalizing Collagen Membranes with MSC-Conditioned Media Promotes Guided Bone Regeneration in Rat Calvarial Defects.

Cells. 2023-2-28

[3]
Barrier Membranes for Guided Bone Regeneration (GBR): A Focus on Recent Advances in Collagen Membranes.

Int J Mol Sci. 2022-11-29

[4]
BMSC exosome-enriched acellular fish scale scaffolds promote bone regeneration.

J Nanobiotechnology. 2022-10-12

[5]
Effects of Extracellular Vesicles from Osteogenic Differentiated Human BMSCs on Osteogenic and Adipogenic Differentiation Capacity of Naïve Human BMSCs.

Cells. 2022-8-11

[6]
Extracellular Vesicles Derived from Primed Mesenchymal Stromal Cells Loaded on Biphasic Calcium Phosphate Biomaterial Exhibit Enhanced Macrophage Polarization.

Cells. 2022-1-29

[7]
Proteoglycans and Glycosaminoglycans in Stem Cell Homeostasis and Bone Tissue Regeneration.

Front Cell Dev Biol. 2021-11-30

[8]
The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences.

Nucleic Acids Res. 2022-1-7

[9]
Osteoconductive properties of upside-down bilayer collagen membranes in rat calvarial defects.

Int J Implant Dent. 2021-6-7

[10]
Proteomic Comparison of Bone Marrow Derived Osteoblasts and Mesenchymal Stem Cells.

Int J Mol Sci. 2021-5-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索