Suppr超能文献

基于深度学习的自动化流程,用于多重前列腺癌图像中的血管检测与分布分析

Deep learning-based automated pipeline for blood vessel detection and distribution analysis in multiplexed prostate cancer images.

作者信息

Karageorgos Grigorios M, Cho Sanghee, McDonough Elizabeth, Chadwick Chrystal, Ghose Soumya, Owens Jonathan, Jung Kyeong Joo, Machiraju Raghu, West Robert, Brooks James D, Mallick Parag, Ginty Fiona

机构信息

GE Research, Niskayuna, NY, United States.

Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, United States.

出版信息

Front Bioinform. 2024 Jan 23;3:1296667. doi: 10.3389/fbinf.2023.1296667. eCollection 2023.

Abstract

Prostate cancer is a highly heterogeneous disease, presenting varying levels of aggressiveness and response to treatment. Angiogenesis is one of the hallmarks of cancer, providing oxygen and nutrient supply to tumors. Micro vessel density has previously been correlated with higher Gleason score and poor prognosis. Manual segmentation of blood vessels (BVs) In microscopy images is challenging, time consuming and may be prone to inter-rater variabilities. In this study, an automated pipeline is presented for BV detection and distribution analysis in multiplexed prostate cancer images. A deep learning model was trained to segment BVs by combining CD31, CD34 and collagen IV images. In addition, the trained model was used to analyze the size and distribution patterns of BVs in relation to disease progression in a cohort of prostate cancer patients ( = 215). The model was capable of accurately detecting and segmenting BVs, as compared to ground truth annotations provided by two reviewers. The precision (P), recall (R) and dice similarity coefficient (DSC) were equal to 0.93 (SD 0.04), 0.97 (SD 0.02) and 0.71 (SD 0.07) with respect to reviewer 1, and 0.95 (SD 0.05), 0.94 (SD 0.07) and 0.70 (SD 0.08) with respect to reviewer 2, respectively. BV count was significantly associated with 5-year recurrence (adjusted = 0.0042), while both count and area of blood vessel were significantly associated with Gleason grade (adjusted = 0.032 and 0.003 respectively). The proposed methodology is anticipated to streamline and standardize BV analysis, offering additional insights into the biology of prostate cancer, with broad applicability to other cancers.

摘要

前列腺癌是一种高度异质性疾病,其侵袭性和对治疗的反应程度各不相同。血管生成是癌症的标志之一,为肿瘤提供氧气和营养供应。微血管密度此前已与较高的 Gleason 评分和不良预后相关。在显微镜图像中手动分割血管具有挑战性、耗时且可能容易出现评分者间的差异。在本研究中,提出了一种用于在多重前列腺癌图像中进行血管检测和分布分析的自动化流程。通过结合 CD31、CD34 和胶原蛋白 IV 图像训练了一个深度学习模型来分割血管。此外,使用训练好的模型分析了一组前列腺癌患者(n = 215)中血管的大小和分布模式与疾病进展的关系。与两位审阅者提供的真实注释相比,该模型能够准确检测和分割血管。相对于审阅者 1,精确率(P)、召回率(R)和骰子相似系数(DSC)分别为 0.93(标准差 0.04)、0.97(标准差 0.02)和 0.71(标准差 0.07);相对于审阅者 2,分别为 0.95(标准差 0.05)、0.94(标准差 0.07)和 0.70(标准差 0.08)。血管计数与 5 年复发显著相关(调整后 p = 0.0042),而血管计数和面积均与 Gleason 分级显著相关(调整后 p 分别为 = 0.032 和 0.003)。预计所提出的方法将简化和标准化血管分析,为前列腺癌生物学提供更多见解,并广泛适用于其他癌症。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac70/10844485/f9359e86b45e/fbinf-03-1296667-g001.jpg

相似文献

1
Deep learning-based automated pipeline for blood vessel detection and distribution analysis in multiplexed prostate cancer images.
Front Bioinform. 2024 Jan 23;3:1296667. doi: 10.3389/fbinf.2023.1296667. eCollection 2023.

引用本文的文献

2
ML-driven segmentation of microvascular features during histological examination of tissue-engineered vascular grafts.
Front Bioeng Biotechnol. 2024 Jun 26;12:1411680. doi: 10.3389/fbioe.2024.1411680. eCollection 2024.
3
AZGP1 deficiency promotes angiogenesis in prostate cancer.
J Transl Med. 2024 Apr 24;22(1):383. doi: 10.1186/s12967-024-05183-x.

本文引用的文献

1
Ensemble Deep Learning Model to Predict Lymphovascular Invasion in Gastric Cancer.
Cancers (Basel). 2024 Jan 19;16(2):430. doi: 10.3390/cancers16020430.
2
CODA: quantitative 3D reconstruction of large tissues at cellular resolution.
Nat Methods. 2022 Nov;19(11):1490-1499. doi: 10.1038/s41592-022-01650-9. Epub 2022 Oct 24.
4
Notch regulates vascular collagen IV basement membrane through modulation of lysyl hydroxylase 3 trafficking.
Angiogenesis. 2021 Nov;24(4):789-805. doi: 10.1007/s10456-021-09791-9. Epub 2021 May 6.
6
Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study.
Lancet Oncol. 2020 Feb;21(2):233-241. doi: 10.1016/S1470-2045(19)30739-9. Epub 2020 Jan 8.
8
A new era: artificial intelligence and machine learning in prostate cancer.
Nat Rev Urol. 2019 Jul;16(7):391-403. doi: 10.1038/s41585-019-0193-3.
9
Methods for Segmentation and Classification of Digital Microscopy Tissue Images.
Front Bioeng Biotechnol. 2019 Apr 2;7:53. doi: 10.3389/fbioe.2019.00053. eCollection 2019.
10
Microvessel prediction in H&E Stained Pathology Images using fully convolutional neural networks.
BMC Bioinformatics. 2018 Feb 27;19(1):64. doi: 10.1186/s12859-018-2055-z.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验