Suppr超能文献

活体类器官周期性成像。

Live Organoid Cyclic Imaging.

机构信息

Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.

Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.

出版信息

Adv Sci (Weinh). 2024 Apr;11(14):e2309289. doi: 10.1002/advs.202309289. Epub 2024 Feb 7.

Abstract

Organoids are becoming increasingly relevant in biology and medicine for their physiological complexity and accuracy in modeling human disease. To fully assess their biological profile while preserving their spatial information, spatiotemporal imaging tools are warranted. While previously developed imaging techniques, such as four-dimensional (4D) live imaging and light-sheet imaging have yielded important clinical insights, these technologies lack the combination of cyclic and multiplexed analysis. To address these challenges, bioorthogonal click chemistry is applied to display the first demonstration of multiplexed cyclic imaging of live and fixed patient-derived glioblastoma tumor organoids. This technology exploits bioorthogonal click chemistry to quench fluorescent signals from the surface and intracellular of labeled cells across multiple cycles, allowing for more accurate and efficient molecular profiling of their complex phenotypes. Herein, the versatility of this technology is demonstrated for the screening of glioblastoma markers in patient-derived human glioblastoma organoids while conserving their viability. It is anticipated that the findings and applications of this work can be broadly translated into investigating physiological developments in other organoid systems.

摘要

类器官在生物学和医学领域中的应用越来越广泛,因为它们具有生理复杂性和模拟人类疾病的准确性。为了在保留其空间信息的同时充分评估其生物学特征,需要使用时空成像工具。虽然以前开发的成像技术,如四维(4D)活体成像和光片成像已经提供了重要的临床见解,但这些技术缺乏循环和多路复用分析的结合。为了解决这些挑战,生物正交点击化学被应用于展示首例对活的和固定的患者来源的胶质母细胞瘤肿瘤类器官进行多路复用循环成像的演示。该技术利用生物正交点击化学在多个循环中猝灭标记细胞表面和细胞内的荧光信号,从而更准确、更有效地对其复杂表型进行分子分析。本文展示了该技术在筛选患者来源的人胶质母细胞瘤类器官中的胶质母细胞瘤标志物时的多功能性,同时保持了它们的活力。预计这项工作的发现和应用可以广泛转化为研究其他类器官系统中的生理发育。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32a9/11005682/d13a92c2f1e0/ADVS-11-2309289-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验