Suppr超能文献

用于“超越锂离子”电池的一些具有提高电导率的单离子导电聚合物电解质的结构优化

Structure Optimization of Some Single-Ion Conducting Polymer Electrolytes with Increased Conductivity Used in "Beyond Lithium-Ion" Batteries.

作者信息

Butnicu Dan, Ionescu Daniela, Kovaci Maria

机构信息

Department of Basics of Electronics, Faculty of Electronics, Telecommunications, and Information Technologies, "Gheorghe Asachi" Technical University of Iasi, Carol I Blvd, No. 11, 700506 Iasi, Romania.

Department of Telecommunications and Informational Technologies, Faculty of Electronics, Telecommunications, and Information Technologies, "Gheorghe Asachi" Technical University of Iasi, Carol I Blvd, No. 11, 700506 Iasi, Romania.

出版信息

Polymers (Basel). 2024 Jan 29;16(3):368. doi: 10.3390/polym16030368.

Abstract

Simulation techniques implemented with the HFSS program were used for structure optimization from the point of view of increasing the conductivity of the batteries' electrolytes. Our analysis was focused on reliable "beyond lithium-ion" batteries, using single-ion conducting polymer electrolytes, in a gel variant. Their conductivity can be increased by tuning and correlating the internal parameters of the structure. Materials in the battery system were modeled at the nanoscale with HFSS: electrodes-electrolyte-moving ions. Some new materials reported in the literature were studied, like poly(ethylene glycol) dimethacrylate-x-styrene sulfonate (PEGDMA-SS) or PU-TFMSI for the electrolyte; p-dopable polytriphenyl amine for cathodes in Na-ion batteries or sulfur cathodes in Mg-ion or Al-ion batteries. The coarse-grained molecular dynamics model combined with the atomistic model were both considered for structural simulation at the molecular level. Issues like interaction forces at the nanoscopic scale, charge carrier mobility, conductivity in the cell, and energy density of the electrodes were implied in the analysis. The results were compared to the reported experimental data, to confirm the method and for error analysis. For the real structures of gel polymer electrolytes, this method can indicate that their conductivity increases up to 15%, and even up to 26% in the resonant cases, via parameter correlation. The tuning and control of material properties becomes a problem of structure optimization, solved with non-invasive simulation methods, in agreement with the experiment.

摘要

从提高电池电解质电导率的角度出发,利用HFSS程序实现的模拟技术对结构进行优化。我们的分析聚焦于可靠的“超越锂离子”电池,这类电池采用凝胶变体的单离子传导聚合物电解质。通过调整和关联结构的内部参数,可以提高其电导率。利用HFSS在纳米尺度对电池系统中的材料进行建模:电极 - 电解质 - 移动离子。研究了文献中报道的一些新材料,如用于电解质的聚(乙二醇)二甲基丙烯酸酯 - x - 苯乙烯磺酸盐(PEGDMA - SS)或PU - TFMSI;用于钠离子电池阴极的对可掺杂聚三苯胺或用于镁离子或铝离子电池的硫阴极。在分子水平的结构模拟中同时考虑了粗粒度分子动力学模型和原子模型。分析中涉及了诸如纳米尺度下的相互作用力、电荷载流子迁移率、电池中的电导率以及电极的能量密度等问题。将结果与报道的实验数据进行比较,以验证该方法并进行误差分析。对于凝胶聚合物电解质真正的结构,该方法表明通过参数关联,其电导率可提高15%,在共振情况下甚至可提高26%。材料性能的调整和控制成为一个结构优化问题,通过与实验一致的非侵入性模拟方法得以解决。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dae9/10857281/b964735ad8ce/polymers-16-00368-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验