Suppr超能文献

下肢主动运动意图的脑电图生成机制及其虚拟现实诱导增强:一项初步研究。

EEG generation mechanism of lower limb active movement intention and its virtual reality induction enhancement: a preliminary study.

作者信息

Dong Runlin, Zhang Xiaodong, Li Hanzhe, Masengo Gilbert, Zhu Aibin, Shi Xiaojun, He Chen

机构信息

School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China.

Shaanxi Key Laboratory of Intelligent Robots, Xi'an Jiaotong University, Xi'an, Shaanxi, China.

出版信息

Front Neurosci. 2024 Jan 30;17:1305850. doi: 10.3389/fnins.2023.1305850. eCollection 2023.

Abstract

INTRODUCTION

Active rehabilitation requires active neurological participation when users use rehabilitation equipment. A brain-computer interface (BCI) is a direct communication channel for detecting changes in the nervous system. Individuals with dyskinesia have unclear intentions to initiate movement due to physical or psychological factors, which is not conducive to detection. Virtual reality (VR) technology can be a potential tool to enhance the movement intention from pre-movement neural signals in clinical exercise therapy. However, its effect on electroencephalogram (EEG) signals is not yet known. Therefore, the objective of this paper is to construct a model of the EEG signal generation mechanism of lower limb active movement intention and then investigate whether VR induction could improve movement intention detection based on EEG.

METHODS

Firstly, a neural dynamic model of lower limb active movement intention generation was established from the perspective of signal transmission and information processing. Secondly, the movement-related EEG signal was calculated based on the model, and the effect of VR induction was simulated. Movement-related cortical potential (MRCP) and event-related desynchronization (ERD) features were extracted to analyze the enhancement of movement intention. Finally, we recorded EEG signals of 12 subjects in normal and VR environments to verify the effectiveness and feasibility of the above model and VR induction enhancement of lower limb active movement intention for individuals with dyskinesia.

RESULTS

Simulation and experimental results show that VR induction can effectively enhance the EEG features of subjects and improve the detectability of movement intention.

DISCUSSION

The proposed model can simulate the EEG signal of lower limb active movement intention, and VR induction can enhance the early and accurate detectability of lower limb active movement intention. It lays the foundation for further robot control based on the actual needs of users.

摘要

引言

当使用者使用康复设备时,主动康复需要神经的积极参与。脑机接口(BCI)是用于检测神经系统变化的直接通信通道。患有运动障碍的个体由于身体或心理因素,发起运动的意图不明确,这不利于检测。虚拟现实(VR)技术可能是一种潜在工具,可在临床运动治疗中增强运动前神经信号产生的运动意图。然而,其对脑电图(EEG)信号的影响尚不清楚。因此,本文的目的是构建下肢主动运动意图的脑电信号产生机制模型,然后研究VR诱导是否能改善基于脑电图的运动意图检测。

方法

首先,从信号传输和信息处理的角度建立下肢主动运动意图产生的神经动力学模型。其次,基于该模型计算与运动相关的脑电信号,并模拟VR诱导的效果。提取与运动相关的皮层电位(MRCP)和事件相关去同步化(ERD)特征,以分析运动意图的增强情况。最后,我们记录了12名受试者在正常和VR环境下的脑电信号,以验证上述模型以及VR诱导增强运动障碍个体下肢主动运动意图的有效性和可行性。

结果

仿真和实验结果表明,VR诱导可以有效增强受试者的脑电特征,提高运动意图的可检测性。

讨论

所提出的模型可以模拟下肢主动运动意图的脑电信号,VR诱导可以增强下肢主动运动意图的早期和准确可检测性。这为基于用户实际需求的进一步机器人控制奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56fd/10861750/e1610aae86fb/fnins-17-1305850-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验