Li Pan, Wang Yuwei, He Xiaoxian, Cui Yuyang, Ouyang Jingyu, Ouyang Ju, He Zicheng, Hu Jiayu, Liu Xiaojuan, Wei Hang, Wang Yu, Lu Xiaoling, Ji Qian, Cai Xinyuan, Liu Li, Hou Chong, Zhou Ning, Pan Shaowu, Wang Xiangru, Zhou Huamin, Qiu Cheng-Wei, Lu Yan-Qing, Tao Guangming
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
Key Laboratory of Vascular Aging (HUST), Ministry of Education, Wuhan, 430030, China.
Light Sci Appl. 2024 Feb 14;13(1):48. doi: 10.1038/s41377-024-01383-8.
Endowing flexible and adaptable fiber devices with light-emitting capabilities has the potential to revolutionize the current design philosophy of intelligent, wearable interactive devices. However, significant challenges remain in developing fiber devices when it comes to achieving uniform and customizable light effects while utilizing lightweight hardware. Here, we introduce a mass-produced, wearable, and interactive photochromic fiber that provides uniform multicolored light control. We designed independent waveguides inside the fiber to maintain total internal reflection of light as it traverses the fiber. The impact of excessive light leakage on the overall illuminance can be reduced by utilizing the saturable absorption effect of fluorescent materials to ensure light emission uniformity along the transmission direction. In addition, we coupled various fluorescent composite materials inside the fiber to achieve artificially controllable spectral radiation of multiple color systems in a single fiber. We prepared fibers on mass-produced kilometer-long using the thermal drawing method. The fibers can be directly integrated into daily wearable devices or clothing in various patterns and combined with other signal input components to control and display patterns as needed. This work provides a new perspective and inspiration to the existing field of fiber display interaction, paving the way for future human-machine integration.
赋予柔性且可适配的纤维器件发光能力,有望彻底改变当前智能可穿戴交互设备的设计理念。然而,在开发纤维器件时,要在使用轻质硬件的同时实现均匀且可定制的光效果,仍存在重大挑战。在此,我们介绍一种可大规模生产、可穿戴且具有交互性的光致变色纤维,它能实现均匀的多色光控制。我们在纤维内部设计了独立的波导,以在光穿过纤维时保持光的全内反射。利用荧光材料的饱和吸收效应可减少过多光泄漏对整体照度的影响,从而确保沿传输方向的发光均匀性。此外,我们在纤维内部耦合了各种荧光复合材料,以在单根纤维中实现多个颜色系统的人工可控光谱辐射。我们采用热拉伸法制备了长达千米级的可大规模生产的纤维。这些纤维可以直接以各种图案集成到日常可穿戴设备或衣物中,并与其他信号输入组件相结合,以按需控制和显示图案。这项工作为现有的纤维显示交互领域提供了新的视角和灵感,为未来的人机集成铺平了道路。