Suppr超能文献

利用人工智能评估格陵兰人群中的糖尿病眼病。

The use of artificial intelligence to assess diabetic eye disease among the Greenlandic population.

机构信息

Greenland Center of Health Research, Institute of Nursing and Health Science, University of Greenland, Nuuk, Greenland.

Clinical Epidemiology, Steno Diabetes Center Copenhagen, Copenhagen, Denmark.

出版信息

Int J Circumpolar Health. 2024 Dec;83(1):2314802. doi: 10.1080/22423982.2024.2314802. Epub 2024 Feb 15.

Abstract

Retina fundus images conducted in Greenland are telemedically assessed for diabetic retinopathy by ophthalmological nurses in Denmark. Applying an AI grading solution, in a Greenlandic setting, could potentially improve the efficiency and cost-effectiveness of DR screening. We developed an AI model using retina fundus photos, performed on persons registered with diabetes in Greenland and Denmark, using Optos® ultra wide-field scanning laser ophthalmoscope, graded according to ICDR.Using the ResNet50 network we compared the model's ability to distinguish between different images of ICDR severity levels in a confusion matrix. Comparing images with ICDR level 0 to images of ICDR level 4 resulted in an accuracy of 0.9655, AUC of 0.9905, sensitivity and specificity of 96.6%.Comparing ICDR levels 0,1,2 with ICDR levels 3,4, we achieved a performance with an accuracy of 0.8077, an AUC of 0.8728, a sensitivity of 84.6% and a specificity of 78.8%. For the other comparisons, we achieved a modest performance. We developed an AI model using Greenlandic data, to automatically detect DR on Optos retina fundus images. The sensitivity and specificity were too low for our model to be applied directly in a clinical setting, thus optimising the model should be prioritised.

摘要

丹麦的眼科护士通过远程医疗对格陵兰进行的眼底图像进行糖尿病视网膜病变评估。在格陵兰地区应用人工智能分级解决方案,可能会提高 DR 筛查的效率和成本效益。我们使用 Optos®超广角扫描激光检眼镜在格陵兰和丹麦登记的糖尿病患者的眼底照片上开发了一个人工智能模型,并根据 ICDR 进行分级。我们使用 ResNet50 网络在混淆矩阵中比较了模型区分不同 ICDR 严重程度图像的能力。将 ICDR 等级 0 的图像与 ICDR 等级 4 的图像进行比较,准确率为 0.9655,AUC 为 0.9905,灵敏度和特异性分别为 96.6%。将 ICDR 等级 0、1、2 与 ICDR 等级 3、4 进行比较,我们的性能表现为准确率为 0.8077,AUC 为 0.8728,灵敏度为 84.6%,特异性为 78.8%。对于其他比较,我们的表现较为一般。我们使用格陵兰数据开发了一个人工智能模型,用于自动检测 Optos 眼底图像上的 DR。我们的模型灵敏度和特异性太低,无法直接在临床环境中应用,因此应优先优化模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2139/10877649/d96c8a55c845/ZICH_A_2314802_F0001_OC.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验