Suppr超能文献

纳米尺度 DNA 力谱仪的高力应用。

High-Force Application by a Nanoscale DNA Force Spectrometer.

机构信息

Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K.

出版信息

ACS Nano. 2022 Apr 26;16(4):5682-5695. doi: 10.1021/acsnano.1c10698. Epub 2022 Apr 6.

Abstract

The ability to apply and measure high forces (>10 pN) on the nanometer scale is critical to the development of nanomedicine, molecular robotics, and the understanding of biological processes such as chromatin condensation, membrane deformation, and viral packaging. Established force spectroscopy techniques including optical traps, magnetic tweezers, and atomic force microscopy rely on micron-sized or larger handles to apply forces, limiting their applications within constrained geometries including cellular environments and nanofluidic devices. A promising alternative to these approaches is DNA-based molecular calipers. However, this approach is currently limited to forces on the scale of a few piconewtons. To study the force application capabilities of DNA devices, we implemented DNA origami nanocalipers with tunable mechanical properties in a geometry that allows application of force to rupture a DNA duplex. We integrated static and dynamic single-molecule characterization methods and statistical mechanical modeling to quantify the device properties including force output and dynamic range. We found that the thermally driven dynamics of the device are capable of applying forces of at least 20 piconewtons with a nanometer-scale dynamic range. These characteristics could eventually be used to study other biomolecular processes such as protein unfolding or to control high-affinity interactions in nanomechanical devices or molecular robots.

摘要

在纳米尺度上施加和测量高力(>10 pN)的能力对于纳米医学、分子机器人学以及对染色质凝聚、膜变形和病毒包装等生物过程的理解至关重要。已建立的力谱技术包括光阱、磁镊和原子力显微镜,它们依赖于微米或更大的手柄来施加力,这限制了它们在包括细胞环境和纳米流体设备在内的受限几何形状中的应用。一种有前途的替代方法是基于 DNA 的分子卡尺。然而,这种方法目前仅限于几皮牛顿规模的力。为了研究 DNA 器件的力施加能力,我们在允许施加力以破坏 DNA 双链的几何形状中实现了具有可调机械性能的 DNA 折纸纳米卡尺。我们集成了静态和动态单分子表征方法和统计力学建模,以量化包括力输出和动态范围在内的器件特性。我们发现,该器件的热驱动动力学能够施加至少 20 pN 的力,具有纳米级的动态范围。这些特性最终可用于研究其他生物分子过程,如蛋白质展开,或控制纳米机械器件或分子机器人中的高亲和力相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46d4/9048690/74990c11f827/nn1c10698_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验