Suppr超能文献

基于蛋白语言模型的优化实现了尿嘧啶-N-糖基化酶变体的可编程 T 到 G 和 T 到 C 碱基编辑。

Protein language models-assisted optimization of a uracil-N-glycosylase variant enables programmable T-to-G and T-to-C base editing.

机构信息

Fudan University, 220 Handan Road, Shanghai 200433, China; School of Medicine, Westlake University, Hangzhou, Zhejiang 310014, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310014, China; Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang 310014, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310014, China; Westlake Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China.

School of Engineering, Westlake University, Hangzhou, Zhejiang 310014, China.

出版信息

Mol Cell. 2024 Apr 4;84(7):1257-1270.e6. doi: 10.1016/j.molcel.2024.01.021. Epub 2024 Feb 19.

Abstract

Current base editors (BEs) use DNA deaminases, including cytidine deaminase in cytidine BE (CBE) or adenine deaminase in adenine BE (ABE), to facilitate transition nucleotide substitutions. Combining CBE or ABE with glycosylase enzymes can induce limited transversion mutations. Nonetheless, a critical demand remains for BEs capable of generating alternative mutation types, such as T>G corrections. In this study, we leveraged pre-trained protein language models to optimize a uracil-N-glycosylase (UNG) variant with altered specificity for thymines (eTDG). Notably, after two rounds of testing fewer than 50 top-ranking variants, more than 50% exhibited over 1.5-fold enhancement in enzymatic activities. When eTDG was fused with nCas9, it induced programmable T-to-S (G/C) substitutions and corrected db/db diabetic mutation in mice (up to 55%). Our findings not only establish orthogonal strategies for developing novel BEs but also demonstrate the capacities of protein language models for optimizing enzymes without extensive task-specific training data.

摘要

目前的碱基编辑器(BEs)使用 DNA 脱氨酶,包括胞嘧啶脱氨酶在胞嘧啶 BE(CBE)或腺嘌呤脱氨酶在腺嘌呤 BE(ABE),以促进转换核苷酸取代。将 CBE 或 ABE 与糖苷酶结合可以诱导有限的颠换突变。尽管如此,仍然需要能够产生替代突变类型的 BEs,例如 T>G 校正。在这项研究中,我们利用预先训练的蛋白质语言模型来优化具有改变的胸腺嘧啶特异性的尿嘧啶-N-糖基化酶(UNG)变体(eTDG)。值得注意的是,经过两轮不到 50 个排名最高的变体的测试,超过 50%的变体表现出超过 1.5 倍的酶活性增强。当 eTDG 与 nCas9 融合时,它诱导可编程的 T 到 S(G/C)取代,并在小鼠中纠正 db/db 糖尿病突变(高达 55%)。我们的研究结果不仅为开发新型 BEs 建立了正交策略,还证明了蛋白质语言模型在没有广泛的任务特定训练数据的情况下优化酶的能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验