Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
Interfaculty Institute for Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany.
Elife. 2024 Feb 21;12:RP88793. doi: 10.7554/eLife.88793.
Synthetic autotrophy is a promising avenue to sustainable bioproduction from CO. Here, we use iterative laboratory evolution to generate several distinct autotrophic strains. Utilising this genetic diversity, we identify that just three mutations are sufficient for to grow autotrophically, when introduced alongside non-native energy (formate dehydrogenase) and carbon-fixing (RuBisCO, phosphoribulokinase, carbonic anhydrase) modules. The mutated genes are involved in glycolysis (), central-carbon regulation (), and RNA transcription (). The mutation reduces the enzyme's activity, thereby stabilising the carbon-fixing cycle by capping a major branching flux. For the other two mutations, we observe down-regulation of several metabolic pathways and increased expression of native genes associated with the carbon-fixing module () and the energy module (), as well as an increased ratio of NADH/NAD - the cycle's electron-donor. This study demonstrates the malleability of metabolism and its capacity to switch trophic modes using only a small number of genetic changes and could facilitate transforming other heterotrophic organisms into autotrophs.
人工自养是从 CO2 可持续生产生物制剂的有前途的途径。在这里,我们使用迭代实验室进化来产生几种不同的自养菌株。利用这种遗传多样性,我们发现,当引入非天然能源(甲酸脱氢酶)和碳固定(RuBisCO、磷酸核糖激酶、碳酸酐酶)模块时,只需三个突变就足以使 进行自养生长。突变基因涉及糖酵解()、中心碳调控()和 RNA 转录()。突变减少了酶的活性,从而通过封顶主要分支通量稳定碳固定循环。对于另外两个突变,我们观察到几种代谢途径的下调和与碳固定模块()和能源模块()相关的天然基因的表达增加,以及 NADH/NAD 的增加比例 - 该循环的电子供体。这项研究表明,代谢具有可塑造性,可以仅使用少量遗传变化来切换营养模式,并可以促进将其他异养生物转化为自养生物。