Suppr超能文献

结合进化策略与滤波的混合鲸鱼算法用于高维优化:在微阵列癌症数据中的应用

Hybrid whale algorithm with evolutionary strategies and filtering for high-dimensional optimization: Application to microarray cancer data.

作者信息

Hafiz Rahila, Saeed Sana

机构信息

College of Statistical Sciences, University of the Punjab, Lahore, Pakistan.

出版信息

PLoS One. 2024 Mar 11;19(3):e0295643. doi: 10.1371/journal.pone.0295643. eCollection 2024.

Abstract

The standard whale algorithm is prone to suboptimal results and inefficiencies in high-dimensional search spaces. Therefore, examining the whale optimization algorithm components is critical. The computer-generated initial populations often exhibit an uneven distribution in the solution space, leading to low diversity. We propose a fusion of this algorithm with a discrete recombinant evolutionary strategy to enhance initialization diversity. We conduct simulation experiments and compare the proposed algorithm with the original WOA on thirteen benchmark test functions. Simulation experiments on unimodal or multimodal benchmarks verified the better performance of the proposed RESHWOA, such as accuracy, minimum mean, and low standard deviation rate. Furthermore, we performed two data reduction techniques, Bhattacharya distance and signal-to-noise ratio. Support Vector Machine (SVM) excels in dealing with high-dimensional datasets and numerical features. When users optimize the parameters, they can significantly improve the SVM's performance, even though it already works well with its default settings. We applied RESHWOA and WOA methods on six microarray cancer datasets to optimize the SVM parameters. The exhaustive examination and detailed results demonstrate that the new structure has addressed WOA's main shortcomings. We conclude that the proposed RESHWOA performed significantly better than the WOA.

摘要

标准鲸鱼算法在高维搜索空间中容易出现次优结果和效率低下的问题。因此,研究鲸鱼优化算法的组件至关重要。计算机生成的初始种群在解空间中往往表现出分布不均,导致多样性较低。我们提出将该算法与离散重组进化策略相融合,以增强初始化多样性。我们进行了模拟实验,并将所提出的算法与原始鲸鱼算法在13个基准测试函数上进行了比较。在单峰或多峰基准上的模拟实验验证了所提出的基于重组进化策略的鲸鱼算法(RESHWOA)具有更好的性能,如准确性、最小均值和低标准差率。此外,我们还执行了两种数据约简技术,即巴塔查里亚距离和信噪比。支持向量机(SVM)在处理高维数据集和数值特征方面表现出色。当用户优化参数时,即使支持向量机在默认设置下已经表现良好,也能显著提高其性能。我们将RESHWOA和鲸鱼算法方法应用于六个微阵列癌症数据集,以优化支持向量机参数。详尽的检验和详细的结果表明,新结构解决了鲸鱼算法的主要缺点。我们得出结论,所提出的RESHWOA的性能明显优于鲸鱼算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验