Wu Jiajia, Akinin Abraham, Somayajulu Jonathan, Lee Min S, Paul Akshay, Lu Hongyu, Park Yongjae, Kim Seong-Jin, Mercier Patrick P, Cauwenberghs Gert
IEEE Trans Biomed Circuits Syst. 2024 Apr;18(2):263-273. doi: 10.1109/TBCAS.2024.3368068. Epub 2024 Apr 2.
Advances in brain-machine interfaces and wearable biomedical sensors for healthcare and human-computer interactions call for precision electrophysiology to resolve a variety of biopotential signals across the body that cover a wide range of frequencies, from the mHz-range electrogastrogram (EGG) to the kHz-range electroneurogram (ENG). Existing integrated wearable solutions for minimally invasive biopotential recordings are limited in detection range and accuracy due to trade-offs in bandwidth, noise, input impedance, and power consumption. This article presents a 16-channel wide-band ultra-low-noise neural recording system-on-chip (SoC) fabricated in 65nm CMOS for chronic use in mobile healthcare settings that spans a bandwidth of 0.001 Hz to 1 kHz through a featured sample-level duty-cycling (SLDC) mode. Each recording channel is implemented by a delta-sigma analog-to-digital converter (ADC) achieving 1.0 μ V input-referred noise over 1Hz-1kHz bandwidth with a Noise Efficiency Factor (NEF) of 2.93 in continuous operation mode. In SLDC mode, the power supply is duty-cycled while maintaining consistently low input-referred noise levels at ultra-low frequencies (1.1 μV over 0.001Hz-1Hz) and 435 M Ω input impedance. The functionalities of the proposed SoC are validated with two human electrophysiology applications: recording low-amplitude electroencephalogram (EEG) through electrodes fixated on the forehead to monitor brain waves, and ultra-slow-wave electrogastrogram (EGG) through electrodes fixated on the abdomen to monitor digestion.
用于医疗保健和人机交互的脑机接口及可穿戴生物医学传感器的进展,要求采用精确的电生理学来解析遍布全身的各种生物电位信号,这些信号涵盖从毫赫兹范围的胃电图(EGG)到千赫兹范围的神经电图(ENG)的广泛频率。现有的用于微创生物电位记录的集成可穿戴解决方案,由于在带宽、噪声、输入阻抗和功耗方面的权衡,在检测范围和准确性上受到限制。本文介绍了一款采用65nm CMOS工艺制造的16通道宽带超低噪声神经记录片上系统(SoC),用于移动医疗环境中的长期使用,该系统通过一种特色的采样级占空比循环(SLDC)模式,实现了0.001Hz至1kHz的带宽。每个记录通道由一个Δ-Σ模数转换器(ADC)实现,在连续运行模式下,在1Hz - 1kHz带宽上实现1.0μV的输入参考噪声,噪声效率因子(NEF)为2.93。在SLDC模式下,电源进行占空比循环,同时在超低频(0.001Hz - 1Hz上为1.1μV)和435MΩ输入阻抗下保持始终如一的低输入参考噪声水平。所提出的SoC的功能通过两个人体电生理学应用得到验证:通过固定在前额的电极记录低幅度脑电图(EEG)以监测脑电波,以及通过固定在腹部的电极记录超慢波胃电图(EGG)以监测消化情况。