Suppr超能文献

基于 Grad-CAM 的深度学习在低级别胶质瘤肿瘤分割中数据增强和超参数优化的定量和可视化分析。

Quantitative and Visual Analysis of Data Augmentation and Hyperparameter Optimization in Deep Learning-Based Segmentation of Low-Grade Glioma Tumors Using Grad-CAM.

机构信息

Nuclear Engineering Department, Shiraz University, Shiraz, Iran.

Department of Physics, Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.

出版信息

Ann Biomed Eng. 2024 May;52(5):1359-1377. doi: 10.1007/s10439-024-03461-9. Epub 2024 Feb 26.

Abstract

This study executes a quantitative and visual investigation on the effectiveness of data augmentation and hyperparameter optimization on the accuracy of deep learning-based segmentation of LGG tumors. The study employed the MobileNetV2 and ResNet backbones with atrous convolution in DeepLabV3+ structure. The Grad-CAM tool was also used to interpret the effect of augmentation and network optimization on segmentation performance. A wide investigation was performed to optimize the network hyperparameters. In addition, the study examined 35 different models to evaluate different data augmentation techniques. The results of the study indicated that incorporating data augmentation techniques and optimization can improve the performance of segmenting brain LGG tumors up to 10%. Our extensive investigation of the data augmentation techniques indicated that enlargement of data from 90° and 225° rotated data,up to down and left to right flipping are the most effective techniques. MobilenetV2 as the backbone,"Focal Loss" as the loss function and "Adam" as the optimizer showed the superior results. The optimal model (DLG-Net) achieved an overall accuracy of 96.1% with a loss value of 0.006. Specifically, the segmentation performance for Whole Tumor (WT), Tumor Core (TC), and Enhanced Tumor (ET) reached a Dice Similarity Coefficient (DSC) of 89.4%, 70.1%, and 49.9%, respectively. Simultaneous visual and quantitative assessment of data augmentation and network optimization can lead to an optimal model with a reasonable performance in segmenting the LGG tumors.

摘要

本研究对数据增强和超参数优化对基于深度学习的 LGG 肿瘤分割准确性的效果进行了定量和可视化研究。该研究采用了带有空洞卷积的 MobileNetV2 和 ResNet 骨干网络,以及 DeepLabV3+结构。还使用了 Grad-CAM 工具来解释增强和网络优化对分割性能的影响。进行了广泛的调查来优化网络超参数。此外,该研究还评估了 35 种不同的模型,以评估不同的数据增强技术。研究结果表明,采用数据增强技术和优化方法可以将大脑 LGG 肿瘤分割的性能提高 10%。我们对数据增强技术的广泛研究表明,将数据从 90°和 225°旋转数据放大,以及上下和左右翻转是最有效的技术。作为骨干网络的 MobileNetV2、作为损失函数的“焦点损失”和作为优化器的“Adam”表现出了优越的效果。最优模型(DLG-Net)的整体准确率达到了 96.1%,损失值为 0.006。具体来说,整体肿瘤(WT)、肿瘤核心(TC)和增强肿瘤(ET)的分割性能达到了 89.4%、70.1%和 49.9%的 Dice 相似系数(DSC)。对数据增强和网络优化的可视化和定量评估可以得到一个具有合理性能的最优模型,用于分割 LGG 肿瘤。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验