文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

高通量纳米粒子条形码技术鉴定阳离子、可降解类脂质材料,用于女性临床前模型中 mRNA 肺部递药。

High-throughput barcoding of nanoparticles identifies cationic, degradable lipid-like materials for mRNA delivery to the lungs in female preclinical models.

机构信息

Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.

Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.

出版信息

Nat Commun. 2024 Feb 29;15(1):1884. doi: 10.1038/s41467-024-45422-9.


DOI:10.1038/s41467-024-45422-9
PMID:38424061
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10904786/
Abstract

Lipid nanoparticles for delivering mRNA therapeutics hold immense promise for the treatment of a wide range of lung-associated diseases. However, the lack of effective methodologies capable of identifying the pulmonary delivery profile of chemically distinct lipid libraries poses a significant obstacle to the advancement of mRNA therapeutics. Here we report the implementation of a barcoded high-throughput screening system as a means to identify the lung-targeting efficacy of cationic, degradable lipid-like materials. We combinatorially synthesize 180 cationic, degradable lipids which are initially screened in vitro. We then use barcoding technology to quantify how the selected 96 distinct lipid nanoparticles deliver DNA barcodes in vivo. The top-performing nanoparticle formulation delivering Cas9-based genetic editors exhibits therapeutic potential for antiangiogenic cancer therapy within a lung tumor model in female mice. These data demonstrate that employing high-throughput barcoding technology as a screening tool for identifying nanoparticles with lung tropism holds potential for the development of next-generation extrahepatic delivery platforms.

摘要

用于递送 mRNA 治疗药物的脂质纳米颗粒为治疗广泛的肺部相关疾病带来了巨大的希望。然而,缺乏能够识别化学性质不同的脂质库的肺递药特征的有效方法,这是 mRNA 治疗药物发展的一个重大障碍。在这里,我们报告了实施条形码高通量筛选系统作为识别阳离子可降解类脂材料肺靶向功效的一种手段。我们组合合成了 180 种阳离子可降解脂质,这些脂质最初在体外进行筛选。然后,我们使用条形码技术来量化所选的 96 种不同的脂质纳米颗粒如何在体内递送 DNA 条形码。表现最佳的纳米颗粒制剂递送 Cas9 基基因编辑器,在雌性小鼠的肺部肿瘤模型中表现出抗血管生成癌症治疗的治疗潜力。这些数据表明,采用高通量条形码技术作为筛选工具来识别具有肺部趋向性的纳米颗粒,有可能开发下一代非肝脏递药平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2601/10904786/a49ae5ca45e9/41467_2024_45422_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2601/10904786/5384ecf8c398/41467_2024_45422_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2601/10904786/98f27da1879b/41467_2024_45422_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2601/10904786/bb24fc43d752/41467_2024_45422_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2601/10904786/d3dcd1e6f8c2/41467_2024_45422_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2601/10904786/a49ae5ca45e9/41467_2024_45422_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2601/10904786/5384ecf8c398/41467_2024_45422_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2601/10904786/98f27da1879b/41467_2024_45422_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2601/10904786/bb24fc43d752/41467_2024_45422_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2601/10904786/d3dcd1e6f8c2/41467_2024_45422_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2601/10904786/a49ae5ca45e9/41467_2024_45422_Fig5_HTML.jpg

相似文献

[1]
High-throughput barcoding of nanoparticles identifies cationic, degradable lipid-like materials for mRNA delivery to the lungs in female preclinical models.

Nat Commun. 2024-2-29

[2]
Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo delivery screening.

J Control Release. 2019-10-31

[3]
Peptide-encoding mRNA barcodes for the high-throughput in vivo screening of libraries of lipid nanoparticles for mRNA delivery.

Nat Biomed Eng. 2023-7

[4]
The replacement of helper lipids with charged alternatives in lipid nanoparticles facilitates targeted mRNA delivery to the spleen and lungs.

J Control Release. 2022-5

[5]
Optimization of a Degradable Polymer-Lipid Nanoparticle for Potent Systemic Delivery of mRNA to the Lung Endothelium and Immune Cells.

Nano Lett. 2018-9-20

[6]
Fast and facile synthesis of amidine-incorporated degradable lipids for versatile mRNA delivery in vivo.

Nat Chem. 2024-10

[7]
Quaternization drives spleen-to-lung tropism conversion for mRNA-loaded lipid-like nanoassemblies.

Theranostics. 2024

[8]
RNA encoded peptide barcodes enable efficient in vivo screening of RNA delivery systems.

Nucleic Acids Res. 2024-9-9

[9]
Polymer-Lipid Nanoparticles for Systemic Delivery of mRNA to the Lungs.

Angew Chem Int Ed Engl. 2016-9-30

[10]
Piperazine-derived lipid nanoparticles deliver mRNA to immune cells in vivo.

Nat Commun. 2022-8-15

引用本文的文献

[1]
Tissue-specific mRNA delivery and prime editing with peptide-ionizable lipid nanoparticles.

Nat Mater. 2025-9-1

[2]
Machine Learning and Artificial Intelligence in Nanomedicine.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2025

[3]
Advancing engineering design strategies for targeted cancer nanomedicine.

Nat Rev Cancer. 2025-8-1

[4]
Strategic Advances in Targeted Delivery Carriers for Therapeutic Cancer Vaccines.

Int J Mol Sci. 2025-7-17

[5]
Machine learning techniques for lipid nanoparticle formulation.

Nano Converg. 2025-7-15

[6]
On-Chip De Novo Production of mRNA Vaccine in Lipid Nanoparticles.

Small. 2025-8

[7]
Customizable Polymeric Nanoparticle Materials Optimized on Hypoxic Cells Facilitate mRNA Expression in the Lungs In Vivo.

Adv Healthc Mater. 2025-7

[8]
Recent Advances in mRNA Delivery Systems for Cancer Therapy.

Adv Sci (Weinh). 2025-8

[9]
Rational Design of Unsaturated, Thioether Ionizable Lipids for Enhanced In Vivo mRNA Delivery.

Adv Healthc Mater. 2025-5-5

[10]
Targeted immunotherapy rescues pulmonary fibrosis by reducing activated fibroblasts and regulating alveolar cell profile.

Nat Commun. 2025-4-21

本文引用的文献

[1]
Molecularly Imprinted Nanomedicine for Anti-angiogenic Cancer Therapy via Blocking Vascular Endothelial Growth Factor Signaling.

Nano Lett. 2023-9-27

[2]
Inhaled mRNA therapy for treatment of cystic fibrosis: Interim results of a randomized, double-blind, placebo-controlled phase 1/2 clinical study.

J Cyst Fibros. 2023-7

[3]
Biotechnology: Overcoming biological barriers to nucleic acid delivery using lipid nanoparticles.

PLoS Biol. 2023-4

[4]
Combinatorial design of nanoparticles for pulmonary mRNA delivery and genome editing.

Nat Biotechnol. 2023-10

[5]
The Transcriptional Response to Lung-Targeting Lipid Nanoparticles .

Nano Lett. 2023-2-8

[6]
Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs.

Nat Rev Mater. 2023

[7]
The landscape of mRNA nanomedicine.

Nat Med. 2022-11

[8]
Engineering Lipid Nanoparticles for Enhanced Intracellular Delivery of mRNA through Inhalation.

ACS Nano. 2022-9-27

[9]
Piperazine-derived lipid nanoparticles deliver mRNA to immune cells in vivo.

Nat Commun. 2022-8-15

[10]
Rational Design of Bisphosphonate Lipid-like Materials for mRNA Delivery to the Bone Microenvironment.

J Am Chem Soc. 2022-6-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索