Suppr超能文献

计算酶重新设计提高了肽C端酰胺化对变性剂的耐受性。

Computational Enzyme Redesign Enhances Tolerance to Denaturants for Peptide C-Terminal Amidation.

作者信息

Zhu Tong, Sun Jinyuan, Pang Hua, Wu Bian

机构信息

AIM Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.

出版信息

JACS Au. 2024 Feb 8;4(2):788-797. doi: 10.1021/jacsau.3c00792. eCollection 2024 Feb 26.

Abstract

The escalating demand for biocatalysts in pharmaceutical and biochemical applications underscores the critical imperative to enhance enzyme activity and durability under high denaturant concentrations. Nevertheless, the development of a practical computational redesign protocol for improving enzyme tolerance to denaturants is challenging due to the limitations of relying solely on model-driven approaches to adequately capture denaturant-enzyme interactions. In this study, we introduce an enzyme redesign strategy termed GRAPE_DA, which integrates multiple data-driven and model-driven computational methods to mitigate the sampling biases inherent in a single approach and comprehensively predict beneficial mutations on both the protein surface and backbone. To illustrate the methodology's effectiveness, we applied it to engineer a peptidylamidoglycolate lyase, resulting in a variant exhibiting up to a 24-fold increase in peptide C-terminal amidation activity under 2.5 M guanidine hydrochloride. We anticipate that this integrated engineering strategy will facilitate the development of enzymatic peptide synthesis and functionalization under denaturing conditions and highlight the role of engineering surface residues in governing protein stability.

摘要

制药和生化应用中对生物催化剂的需求不断增加,这凸显了在高变性剂浓度下提高酶活性和耐久性的迫切需求。然而,由于仅依靠模型驱动方法来充分捕捉变性剂与酶的相互作用存在局限性,因此开发一种实用的计算重新设计方案以提高酶对变性剂的耐受性具有挑战性。在本研究中,我们引入了一种称为GRAPE_DA的酶重新设计策略,该策略整合了多种数据驱动和模型驱动的计算方法,以减轻单一方法中固有的采样偏差,并全面预测蛋白质表面和主链上的有益突变。为了说明该方法的有效性,我们将其应用于工程化肽基氨基乙醇酸裂解酶,结果得到了一个变体,在2.5 M盐酸胍条件下,其肽C末端酰胺化活性提高了24倍。我们预计,这种综合工程策略将促进变性条件下酶促肽合成和功能化的发展,并突出工程化表面残基在控制蛋白质稳定性中的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18f8/10900485/431b7b5e3a8e/au3c00792_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验