Suppr超能文献

锂掺杂高熵氧化物在不同温度和压力条件下的电导率及传导机制

Electrical Conductivities and Conduction Mechanism of Lithium-Doped High-Entropy Oxides at Different Temperature and Pressure Conditions.

作者信息

Song Meng, Zhang Xiaoliang, Wan Shun, Wang Gui, Liu Junxiu, Li Weiwei, Dong Hongliang, Lou Chenjie, Chen Zhiqiang, Chen Bin, Zhang Hengzhong

机构信息

Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China.

Center for High Pressure Science and Technology Advanced Research, Beijing 100193, China.

出版信息

JACS Au. 2024 Jan 17;4(2):592-606. doi: 10.1021/jacsau.3c00693. eCollection 2024 Feb 26.

Abstract

Li-doped high-entropy oxides (Li-HEO) are promising electrode materials for Li-ion batteries. However, their electrical conduction in a wide range of temperatures and/or at high pressure is unknown, hindering their applications under extreme conditions. Especially, a clear understanding of the conduction mechanism is needed. In this work, we determined the carrier type of several Li-doped (MgCoNiCuZn)O semiconductor compounds and measured their electrical conduction at temperatures 79-773 K and/or at pressures up to 50 GPa. Three optical band gaps were uncovered from the UV-vis-NIR absorption measurements, unveiling the existence of defect energy levels near the valence band of p-type semiconductors. The Arrhenius-like plot of the electrical conductivity data revealed the electronic conduction in three temperature regions, i.e., the ionization region from 79 to 170 K, the extrinsic region from ∼170 to 300 K, and the intrinsic region at ≥300 K. The closeness of the determined electronic band gap and the second optical band gap suggests that the conduction electrons in the intrinsic region originate from a thermal excitation from the defect energy levels to the conduction band, which determines the electronic conductivity. It was also found that at or above room temperature, ionic conduction coexists with electronic conduction with a comparable magnitude at ambient pressure and that the intrinsic conduction mechanism also operates at high pressures. These findings provide us a fundamental understanding of the band structure and conduction mechanism of Li-HEO, which would be indispensable to their applications in new technical areas.

摘要

锂掺杂高熵氧化物(Li-HEO)是很有前景的锂离子电池电极材料。然而,它们在很宽的温度范围和/或高压下的导电情况尚不清楚,这阻碍了它们在极端条件下的应用。特别是,需要清楚地了解其传导机制。在这项工作中,我们确定了几种锂掺杂(MgCoNiCuZn)O半导体化合物的载流子类型,并测量了它们在79 - 773 K温度和/或高达50 GPa压力下的电导率。通过紫外-可见-近红外吸收测量发现了三个光学带隙,揭示了p型半导体价带附近存在缺陷能级。电导率数据的类阿仑尼乌斯图揭示了三个温度区域的电子传导,即79至170 K的电离区域、约170至300 K的非本征区域以及≥300 K的本征区域。所确定的电子带隙与第二个光学带隙的接近程度表明,本征区域的传导电子源自缺陷能级到导带的热激发,这决定了电子电导率。还发现,在室温及以上,离子传导与电子传导在环境压力下以相当的量级共存,并且本征传导机制在高压下也起作用。这些发现为我们提供了对Li-HEO能带结构和传导机制的基本理解,这对于它们在新技术领域的应用将是不可或缺的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df03/10900490/2ed87c00088e/au3c00693_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验