Suppr超能文献

用于高压液相分离的微流控装置的数字光处理3D打印

Digital light processing 3D printing of microfluidic devices targeting high-pressure liquid-phase separations.

作者信息

Amini Ali, Themelis Thomas, Ottevaere Heidi, De Vos Jelle, Eeltink Sebastiaan

机构信息

Vrije Universiteit Brussel (VUB), Department of Chemical Engineering, Pleinlaan 2, B-1050, Brussels, Belgium.

Vrije Universiteit Brussel (VUB), Department of Applied Physics and Photonics, Brussels Photonics, Brussels, Belgium.

出版信息

Mikrochim Acta. 2024 Mar 2;191(3):171. doi: 10.1007/s00604-024-06256-w.

Abstract

This paper focuses on 3D printing using digital light processing (DLP) to create microchannel devices with inner diameters of 100, 200, and 500 µm and cater flow-through applications within the realm of analytical chemistry, in particular high-pressure liquid chromatographic separations. Effects of layer thickness and exposure time on channel dimensions and surface roughness were systematically investigated. Utilizing a commercially accessible 3D printer and acrylate resin formulation, we fabricated 100-500 µm i.d. squared and circular channel designs minimizing average surface roughness (< 20%) by applying a 20-µm layer thickness and exposure times ranging from 1.1 to 0.7 s. Pressure resistance was measured by encasing microdevices in an aluminum chip holder that integrated flat-bottom polyetheretherketon (PEEK) nanoports allowing to establish the micro-to-macro interface to the HPLC instrument. After thermal post-curing and finetuning the clamping force of the chip holder, a maximum pressure resistance of 650 bar (1.5% RSD) was reached (n = 3). A polymer monolithic support structure was successfully synthesized in situ with the confines of a 500 µm i.d. 3D printed microchannel. A proof-of-concept of a reversed-phase chromatographic gradient separation of intact proteins is demonstrated using an aqueous-organic mobile-phase with isopropanol as organic modifier.

摘要

本文聚焦于使用数字光处理(DLP)进行3D打印,以制造内径为100、200和500 µm的微通道装置,并满足分析化学领域内的流通应用,特别是高压液相色谱分离。系统研究了层厚和曝光时间对通道尺寸和表面粗糙度的影响。利用商用3D打印机和丙烯酸酯树脂配方,我们制造了内径为100 - 500 µm的方形和圆形通道设计,通过采用20 µm的层厚和1.1至0.7 s的曝光时间,将平均表面粗糙度降至最低(< 20%)。通过将微型装置封装在铝制芯片支架中来测量耐压性,该支架集成了平底聚醚醚酮(PEEK)纳米端口,可建立与高效液相色谱仪的微-宏接口。经过热后固化和微调芯片支架的夹紧力,达到了650 bar的最大耐压性(相对标准偏差为1.5%)(n = 3)。在500 µm内径的3D打印微通道范围内成功原位合成了聚合物整体支撑结构。使用以异丙醇为有机改性剂的水-有机流动相,展示了完整蛋白质反相色谱梯度分离的概念验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验