Morgado Leonor, Gómez-de-Mariscal Estibaliz, Heil Hannah S, Henriques Ricardo
Optical Cell Biology, Instituto Gulbenkian de Ciência, Oeiras, Portugal.
Abbelight, Cachan, France.
J Microsc. 2024 Aug;295(2):85-92. doi: 10.1111/jmi.13282. Epub 2024 Mar 6.
Optical microscopy is an indispensable tool in life sciences research, but conventional techniques require compromises between imaging parameters like speed, resolution, field of view and phototoxicity. To overcome these limitations, data-driven microscopes incorporate feedback loops between data acquisition and analysis. This review overviews how machine learning enables automated image analysis to optimise microscopy in real time. We first introduce key data-driven microscopy concepts and machine learning methods relevant to microscopy image analysis. Subsequently, we highlight pioneering works and recent advances in integrating machine learning into microscopy acquisition workflows, including optimising illumination, switching modalities and acquisition rates, and triggering targeted experiments. We then discuss the remaining challenges and future outlook. Overall, intelligent microscopes that can sense, analyse and adapt promise to transform optical imaging by opening new experimental possibilities.
光学显微镜是生命科学研究中不可或缺的工具,但传统技术需要在成像参数(如速度、分辨率、视野和光毒性)之间进行权衡。为了克服这些限制,数据驱动显微镜在数据采集和分析之间纳入了反馈回路。本综述概述了机器学习如何实现自动化图像分析以实时优化显微镜技术。我们首先介绍与显微镜图像分析相关的关键数据驱动显微镜概念和机器学习方法。随后,我们重点介绍将机器学习集成到显微镜采集工作流程中的开创性工作和最新进展,包括优化照明、切换模式和采集速率,以及触发靶向实验。然后,我们讨论了剩余的挑战和未来展望。总体而言,能够感知、分析和适应的智能显微镜有望通过开辟新的实验可能性来改变光学成像。