Suppr超能文献

光学显微镜检查、机器学习和计算显微镜使血液涂片的高信息量诊断成像成为可能。

Optical mesoscopy, machine learning, and computational microscopy enable high information content diagnostic imaging of blood films.

机构信息

Department of Computer Science, Faculty of Engineering Sciences, University College London, London, UK.

Biometrology Group, National Physical Laboratory, Teddington, UK.

出版信息

J Pathol. 2021 Sep;255(1):62-71. doi: 10.1002/path.5738. Epub 2021 Jun 29.

Abstract

Automated image-based assessment of blood films has tremendous potential to support clinical haematology within overstretched healthcare systems. To achieve this, efficient and reliable digital capture of the rich diagnostic information contained within a blood film is a critical first step. However, this is often challenging, and in many cases entirely unfeasible, with the microscopes typically used in haematology due to the fundamental trade-off between magnification and spatial resolution. To address this, we investigated three state-of-the-art approaches to microscopic imaging of blood films which leverage recent advances in optical and computational imaging and analysis to increase the information capture capacity of the optical microscope: optical mesoscopy, which uses a giant microscope objective (Mesolens) to enable high-resolution imaging at low magnification; Fourier ptychographic microscopy, a computational imaging method which relies on oblique illumination with a series of LEDs to capture high-resolution information; and deep neural networks which can be trained to increase the quality of low magnification, low resolution images. We compare and contrast the performance of these techniques for blood film imaging for the exemplar case of Giemsa-stained peripheral blood smears. Using computational image analysis and shape-based object classification, we demonstrate their use for automated analysis of red blood cell morphology and visualization and detection of small blood-borne parasites such as the malarial parasite Plasmodium falciparum. Our results demonstrate that these new methods greatly increase the information capturing capacity of the light microscope, with transformative potential for haematology and more generally across digital pathology. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.

摘要

基于图像的血液涂片自动评估具有巨大的潜力,可以在医疗资源紧张的系统中为临床血液学提供支持。要实现这一目标,高效、可靠地获取血液涂片所包含的丰富诊断信息是至关重要的第一步。然而,由于显微镜的放大倍数和空间分辨率之间存在基本的权衡,通常情况下这一步极具挑战性,甚至在许多情况下根本无法实现。为了解决这个问题,我们研究了三种基于最新光学和计算成像与分析技术的血液涂片显微镜成像方法,这些方法利用了这些技术来提高光学显微镜的信息采集能力:光学介观成像,它使用巨型显微镜物镜(Mesolens)实现低放大倍数下的高分辨率成像;傅里叶叠层显微镜,这是一种计算成像方法,依赖于一系列 LED 的斜向照明来捕获高分辨率信息;以及深度神经网络,这些网络可以经过训练来提高低放大倍数、低分辨率图像的质量。我们比较和对比了这些技术在血液涂片成像方面的性能,以 Giemsa 染色的外周血涂片为例。我们使用计算图像分析和基于形状的目标分类,演示了它们在红细胞形态的自动分析以及可视化和检测小的血液寄生虫(如疟原虫 Plasmodium falciparum)方面的应用。我们的研究结果表明,这些新方法大大提高了光学显微镜的信息采集能力,为血液学乃至更广泛的数字病理学领域带来了变革性的潜力。© 2021 作者。The Journal of Pathology 由 John Wiley & Sons, Ltd. 代表英国和爱尔兰病理学学会出版。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验