MICALIS Institute, INRAE, AgroParisTech, University of Paris-Saclay, 78350, Jouy-en-Josas, France.
Ecole Normale Supérieure of Lyon, 69342, Lyon, France.
Nat Commun. 2023 Aug 3;14(1):4669. doi: 10.1038/s41467-023-40380-0.
Constraint-based metabolic models have been used for decades to predict the phenotype of microorganisms in different environments. However, quantitative predictions are limited unless labor-intensive measurements of media uptake fluxes are performed. We show how hybrid neural-mechanistic models can serve as an architecture for machine learning providing a way to improve phenotype predictions. We illustrate our hybrid models with growth rate predictions of Escherichia coli and Pseudomonas putida grown in different media and with phenotype predictions of gene knocked-out Escherichia coli mutants. Our neural-mechanistic models systematically outperform constraint-based models and require training set sizes orders of magnitude smaller than classical machine learning methods. Our hybrid approach opens a doorway to enhancing constraint-based modeling: instead of constraining mechanistic models with additional experimental measurements, our hybrid models grasp the power of machine learning while fulfilling mechanistic constrains, thus saving time and resources in typical systems biology or biological engineering projects.
基于约束的代谢模型已经被用于预测不同环境下微生物表型数十年。然而,除非进行媒介摄取通量的劳动密集型测量,否则定量预测是有限的。我们展示了混合神经力学模型如何作为机器学习的架构,提供一种改进表型预测的方法。我们用不同培养基中生长的大肠杆菌和恶臭假单胞菌的生长速率预测以及基因敲除大肠杆菌突变体的表型预测来说明我们的混合模型。我们的神经力学模型系统地优于基于约束的模型,并且所需的训练集大小比经典的机器学习方法小几个数量级。我们的混合方法为增强基于约束的建模开辟了一条道路:我们的混合模型不是用额外的实验测量来约束力学模型,而是利用机器学习的力量,同时满足力学约束,从而在典型的系统生物学或生物工程项目中节省时间和资源。