Department of Orthopedic Surgery, Research School CAPHRI, Maastricht University, Maastricht, The Netherlands.
Department of Orthopedic Surgery, Joint Preservation Clinic, Maastricht University Medical Center, Maastricht, The Netherlands.
J Biomed Mater Res A. 2024 Sep;112(9):1424-1435. doi: 10.1002/jbm.a.37691. Epub 2024 Mar 11.
Currently available focal knee resurfacing implants (FKRIs) are fully or partially composed of metals, which show a large disparity in elastic modulus relative to bone and cartilage tissue. Although titanium is known for its excellent osseointegration, the application in FKRIs can lead to potential stress-shielding and metal implants can cause degeneration of the opposing articulating cartilage due to the high resulting contact stresses. Furthermore, metal implants do not allow for follow-up using magnetic resonance imaging (MRI).To overcome the drawbacks of using metal based FKRIs, a biomimetic and MRI compatible bi-layered non-resorbable thermoplastic polycarbonate-urethane (PCU)-based FKRI was developed. The objective of this preclinical study was to evaluate the mechanical properties, biocompatibility and osteoconduction of a novel Bionate® 75D - zirconium oxide (B75D-ZrO) composite material in vitro and the osseointegration of a B75D-ZrO composite stem PCU implant in a caprine animal model. The tensile strength and elastic modulus of the B75D-ZrO composite were characterized through in vitro mechanical tests under ambient and physiological conditions. In vitro biocompatibility and osteoconductivity were evaluated by exposing human mesenchymal stem cells to the B75D-ZrO composite and culturing the cells under osteogenic conditions. Cell activity and mineralization were assessed and compared to Bionate® 75D (B75D) and titanium disks. The in vivo osseointegration of implants containing a B75D-ZrO stem was compared to implants with a B75D stem and titanium stem in a caprine large animal model. After a follow-up of 6 months, bone histomorphometry was performed to assess the bone-to-implant contact area (BIC). Mechanical testing showed that the B75D-ZrO composite material possesses an elastic modulus in the range of the elastic modulus reported for trabecular bone. The B75D-ZrO composite material facilitated cell mediated mineralization to a comparable extent as titanium. A significantly higher bone-to-implant contact (BIC) score was observed in the B75D-ZrO implants compared to the B75D implants. The BIC of B75D-ZrO implants was not significantly different compared to titanium implants. A biocompatible B75D-ZrO composite approximating the elastic modulus of trabecular bone was developed by compounding B75D with zirconium oxide. In vivo evaluation showed an significant increase of osseointegration for B75D-ZrO composite stem implants compared to B75D polymer stem PCU implants. The osseointegration of B75D-ZrO composite stem PCU implants was not significantly different in comparison to analogous titanium stem metal implants.
目前可用的膝关节局部表面置换植入物(FKRIs)完全或部分由金属组成,其弹性模量与骨和软骨组织有很大差异。虽然钛以其出色的骨整合性而闻名,但在 FKRIs 中的应用可能导致潜在的应力屏蔽,并且由于高接触应力,金属植入物会导致相对关节软骨的退化。此外,金属植入物不允许使用磁共振成像(MRI)进行后续检查。为了克服使用金属 FKRIs 的缺点,开发了一种仿生且与 MRI 兼容的双层不可吸收热塑性聚碳酸酯-聚氨酯(PCU)基 FKRIs。本临床前研究的目的是评估新型 Bionate®75D-氧化锆(B75D-ZrO)复合材料的体外机械性能、生物相容性和骨诱导性,以及 B75D-ZrO 复合材料 PCU 植入物在山羊动物模型中的骨整合情况。通过在环境和生理条件下进行体外力学试验,对 B75D-ZrO 复合材料的拉伸强度和弹性模量进行了表征。通过将人骨髓间充质干细胞暴露于 B75D-ZrO 复合材料并在成骨条件下培养细胞,评估了体外生物相容性和骨诱导性。评估并比较了细胞活性和矿化程度与 Bionate®75D(B75D)和钛盘。在山羊大动物模型中,将含有 B75D-ZrO 柄的植入物与含有 B75D 柄和钛柄的植入物进行了体内骨整合比较。随访 6 个月后,进行骨组织形态计量学以评估骨与植入物的接触面积(BIC)。力学测试表明,B75D-ZrO 复合材料具有在报道的小梁骨弹性模量范围内的弹性模量。B75D-ZrO 复合材料促进了细胞介导的矿化,其程度与钛相当。与 B75D 植入物相比,B75D-ZrO 植入物的骨与植入物的接触(BIC)评分明显更高。B75D-ZrO 植入物的 BIC 与钛植入物无显著差异。通过将 B75D 与氧化锆复合,开发出一种具有仿生特性且弹性模量与小梁骨相近的 B75D-ZrO 复合材料。体内评估表明,与 B75D 聚合物柄 PCU 植入物相比,B75D-ZrO 复合材料柄植入物的骨整合显著增加。B75D-ZrO 复合材料柄 PCU 植入物的骨整合与类似的钛柄金属植入物无显著差异。