Kim Jeoung Kun, Park Donghwi, Chang Min Cheol
Department of Business Administration, School of Business, Yeungnam University, Gyeongsan-si 38541, Republic of Korea.
Seoul Spine Rehabilitation Clinic, Ulsan-si 44607, Republic of Korea.
Bioengineering (Basel). 2025 May 29;12(6):589. doi: 10.3390/bioengineering12060589.
(1) Background: This study aimed to develop a deep learning model using a convolutional neural network (CNN) to automate Risser grade assessment from pelvic radiographs. (2) Methods: We used 1619 pelvic radiographs from patients aged 12-18 years with scoliosis to train two CNN models-one for the right pelvis and one for the left. A multimodal approach incorporated 224 × 224-pixel regions of interest from radiographs, alongside patient age and gender. The models were optimized with Adam, weight decay, rectified linear unit (ReLU) activation, dropout, and batch normalization, while synthetic data augmentation addressed class imbalance. Performance was evaluated through accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (ROC AUC). (3) Results: The right pelvis model achieved 83.64% accuracy; the left pelvis model reached 80.56%. Both models performed well for Risser Grades 0, 2, and 4, with the right pelvis model achieving a microaverage F1-score of 0.836 and ROC AUC of 0.895. The left pelvis model achieved a microaverage F1-score of 0.806 and ROC AUC of 0.872. Challenges arose from class imbalance in less frequent grades. (4) Conclusions: CNN models effectively automated Risser grade assessment, reducing clinician workload and variability.
(1) 背景:本研究旨在开发一种使用卷积神经网络(CNN)的深度学习模型,以实现骨盆X光片Risser分级评估的自动化。(2) 方法:我们使用了1619张12至18岁脊柱侧弯患者的骨盆X光片来训练两个CNN模型,一个用于右骨盆,一个用于左骨盆。多模态方法纳入了X光片中224×224像素的感兴趣区域,以及患者的年龄和性别。模型使用Adam、权重衰减、修正线性单元(ReLU)激活、随机失活和批量归一化进行优化,同时通过合成数据增强来解决类别不平衡问题。通过准确率、精确率、召回率、F1分数和受试者工作特征曲线下面积(ROC AUC)来评估性能。(3) 结果:右骨盆模型的准确率达到83.64%;左骨盆模型达到80.56%。两个模型在Risser分级0、2和4时表现良好,右骨盆模型的微平均F1分数为0.836,ROC AUC为0.895。左骨盆模型的微平均F1分数为0.806,ROC AUC为0.872。在不太常见的分级中,类别不平衡带来了挑战。(4) 结论:CNN模型有效地实现了Risser分级评估的自动化,减少了临床医生的工作量和变异性。