Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, Mount Sinai, 1470 Madison Ave, New York, NY, 10029, USA.
Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.
J Exp Clin Cancer Res. 2024 Mar 15;43(1):81. doi: 10.1186/s13046-024-02997-x.
Immune-checkpoint inhibitors (ICIs) have showed unprecedent efficacy in the treatment of patients with advanced non-small cell lung cancer (NSCLC). However, not all patients manifest clinical benefit due to the lack of reliable predictive biomarkers. We showed preliminary data on the predictive role of the combination of radiomics and plasma extracellular vesicle (EV) PD-L1 to predict durable response to ICIs.
Here, we validated this model in a prospective cohort of patients receiving ICIs plus chemotherapy and compared it with patients undergoing chemotherapy alone. This multiparametric model showed high sensitivity and specificity at identifying non-responders to ICIs and outperformed tissue PD-L1, being directly correlated with tumor change.
These findings indicate that the combination of radiomics and EV PD-L1 dynamics is a minimally invasive and promising biomarker for the stratification of patients to receive ICIs.
免疫检查点抑制剂(ICIs)在治疗晚期非小细胞肺癌(NSCLC)患者方面显示出前所未有的疗效。然而,由于缺乏可靠的预测生物标志物,并非所有患者都能从中获得临床获益。我们初步研究了放射组学和血浆细胞外囊泡(EV)PD-L1 联合预测对 ICIs 持久应答的作用。
本研究在接受 ICIs 联合化疗的前瞻性患者队列中验证了该模型,并与单独接受化疗的患者进行了比较。该多参数模型在识别对 ICIs 无应答者方面具有较高的敏感性和特异性,其性能优于组织 PD-L1,与肿瘤变化直接相关。
这些发现表明,放射组学和 EV PD-L1 动力学的联合是一种微创且有前途的生物标志物,可用于对接受 ICIs 的患者进行分层。