Suppr超能文献

股票价格预测的文献计量学文献综述:从统计模型到深度学习方法

A bibliometric literature review of stock price forecasting: From statistical model to deep learning approach.

作者信息

Vuong Pham Hoang, Phu Lam Hung, Van Nguyen Tran Hong, Duy Le Nhat, Bao Pham The, Trinh Tan Dat

机构信息

Information Science Faculty, Sai Gon University, Ho Chi Minh City, Vietnam.

Faculty of Information Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam.

出版信息

Sci Prog. 2024 Jan-Mar;107(1):368504241236557. doi: 10.1177/00368504241236557.

Abstract

We introduce a comprehensive analysis of several approaches used in stock price forecasting, including statistical, machine learning, and deep learning models. The advantages and limitations of these models are discussed to provide an insight into stock price forecasting. Traditional statistical methods, such as the autoregressive integrated moving average and its variants, are recognized for their efficiency, but they also have some limitations in addressing non-linear problems and providing long-term forecasts. Machine learning approaches, including algorithms such as artificial neural networks and random forests, are praised for their ability to grasp non-linear information without depending on stochastic data or economic theory. Moreover, deep learning approaches, such as convolutional neural networks and recurrent neural networks, can deal with complex patterns in stock prices. Additionally, this study further investigates hybrid models, combining various approaches to explore their strengths and counterbalance individual weaknesses, thereby enhancing predictive accuracy. By presenting a detailed review of various studies and methods, this study illuminates the direction of stock price forecasting and highlights potential approaches for further studies refining the stock price forecasting models.

摘要

我们对股票价格预测中使用的几种方法进行了全面分析,包括统计模型、机器学习模型和深度学习模型。讨论了这些模型的优缺点,以便深入了解股票价格预测。传统统计方法,如自回归积分移动平均及其变体,因其效率而得到认可,但它们在解决非线性问题和提供长期预测方面也存在一些局限性。机器学习方法,包括人工神经网络和随机森林等算法,因其能够在不依赖随机数据或经济理论的情况下掌握非线性信息而受到赞誉。此外,深度学习方法,如卷积神经网络和循环神经网络,能够处理股票价格中的复杂模式。此外,本研究进一步调查了混合模型,将各种方法结合起来,以探索它们的优势并平衡各自的弱点,从而提高预测准确性。通过对各种研究和方法进行详细综述,本研究阐明了股票价格预测的方向,并突出了进一步研究以完善股票价格预测模型的潜在方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/418b/10943735/0af32949b853/10.1177_00368504241236557-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验