Suppr超能文献

用于点参照数据空间混杂的两阶段估计量。

Two-stage estimators for spatial confounding with point-referenced data.

作者信息

Wiecha Nate, Hoppin Jane A, Reich Brian J

机构信息

Department of Statistics, North Carolina State University, Raleigh, NC 27607, United States.

Department of Biological Sciences, North Carolina State University, Raleigh, NC 27607, United States.

出版信息

Biometrics. 2025 Jul 3;81(3). doi: 10.1093/biomtc/ujaf093.

Abstract

Public health data are often spatially dependent, but standard spatial regression methods can suffer from bias and invalid inference when the independent variable is associated with spatially correlated residuals. This could occur if, for example, there is an unmeasured environmental contaminant associated with the independent and outcome variables in a spatial regression analysis. Geoadditive structural equation modeling (gSEM), in which an estimated spatial trend is removed from both the explanatory and response variables before estimating the parameters of interest, has previously been proposed as a solution but there has been little investigation of gSEM's properties with point-referenced data. We link gSEM to results on double machine learning and semiparametric regression based on two-stage procedures. We propose using these semiparametric estimators for spatial regression using Gaussian processes with Matèrn covariance to estimate the spatial trends and term this class of estimators double spatial regression (DSR). We derive regularity conditions for root-n asymptotic normality and consistency and closed-form variance estimation, and show that in simulations where standard spatial regression estimators are highly biased and have poor coverage, DSR can mitigate bias more effectively than competitors and obtain nominal coverage.

摘要

公共卫生数据通常存在空间依赖性,但当自变量与空间相关残差相关联时,标准空间回归方法可能会出现偏差和无效推断。例如,如果在空间回归分析中存在与自变量和结果变量相关的未测量环境污染物,就可能发生这种情况。地理加性结构方程建模(gSEM),即在估计感兴趣的参数之前,从解释变量和响应变量中去除估计的空间趋势,此前已被提出作为一种解决方案,但对于点参考数据的gSEM属性几乎没有研究。我们将gSEM与基于两阶段程序的双机器学习和半参数回归结果联系起来。我们建议使用这些半参数估计器进行空间回归,使用具有Matèrn协方差的高斯过程来估计空间趋势,并将这类估计器称为双空间回归(DSR)。我们推导了根n渐近正态性、一致性和封闭形式方差估计的正则条件,并表明在标准空间回归估计器存在高度偏差和覆盖范围较差的模拟中,DSR比竞争对手更有效地减轻偏差,并获得名义覆盖范围。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b54c/12288666/4117c42da56e/ujaf093alg1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验