Department of Neurosurgery, Jena University Hospital-Friedrich Schiller University Jena, Am Klinikum 1, 07747, Jena, Germany.
Comprehensive Cancer Center Central Germany, Jena, Germany.
J Cancer Res Clin Oncol. 2024 Mar 19;150(3):139. doi: 10.1007/s00432-024-05673-x.
Shared decision-making (SDM) is crucial in neuro-oncology, fostering collaborations between patients and healthcare professionals to navigate treatment options. However, the complexity of neuro-oncological conditions and the cognitive and emotional burdens on patients present significant barriers to achieving effective SDM. This discussion explores the potential of large language models (LLMs) such as OpenAI's ChatGPT and Google's Bard to overcome these barriers, offering a means to enhance patient understanding and engagement in their care. LLMs, by providing accessible, personalized information, could support but not supplant the critical insights of healthcare professionals. The hypothesis suggests that patients, better informed through LLMs, may participate more actively in their treatment choices. Integrating LLMs into neuro-oncology requires navigating ethical considerations, including safeguarding patient data and ensuring informed consent, alongside the judicious use of AI technologies. Future efforts should focus on establishing ethical guidelines, adapting healthcare workflows, promoting patient-oriented research, and developing training programs for clinicians on the use of LLMs. Continuous evaluation of LLM applications will be vital to maintain their effectiveness and alignment with patient needs. Ultimately, this exploration contends that the thoughtful integration of LLMs into SDM processes could significantly enhance patient involvement and strengthen the patient-physician relationship in neuro-oncology care.
在神经肿瘤学中,共享决策(SDM)至关重要,它促进了患者和医疗保健专业人员之间的合作,以选择治疗方案。然而,神经肿瘤学状况的复杂性以及患者的认知和情感负担,给实现有效的 SDM 带来了重大障碍。本讨论探讨了大型语言模型(LLM)如 OpenAI 的 ChatGPT 和 Google 的 Bard 克服这些障碍的潜力,为增强患者对其护理的理解和参与提供了一种手段。LLM 通过提供可访问的、个性化的信息,可以支持而不是替代医疗保健专业人员的关键见解。该假说表明,通过 LLM 获得更好信息的患者可能会更积极地参与他们的治疗选择。将 LLM 整合到神经肿瘤学中需要考虑伦理问题,包括保护患者数据和确保知情同意,以及明智地使用人工智能技术。未来的努力应侧重于制定伦理准则、调整医疗保健工作流程、促进以患者为中心的研究以及为临床医生制定关于使用 LLM 的培训计划。对 LLM 应用程序的持续评估对于保持其有效性和符合患者需求至关重要。最终,本探索认为,将 LLM 谨慎地整合到 SDM 流程中,可以显著增强患者的参与度,并加强神经肿瘤学护理中的医患关系。