Suppr超能文献

大语言模型在神经肿瘤学中的决策辅助作用:综述共享决策应用。

Large language models as decision aids in neuro-oncology: a review of shared decision-making applications.

机构信息

Department of Neurosurgery, Jena University Hospital-Friedrich Schiller University Jena, Am Klinikum 1, 07747, Jena, Germany.

Comprehensive Cancer Center Central Germany, Jena, Germany.

出版信息

J Cancer Res Clin Oncol. 2024 Mar 19;150(3):139. doi: 10.1007/s00432-024-05673-x.

Abstract

Shared decision-making (SDM) is crucial in neuro-oncology, fostering collaborations between patients and healthcare professionals to navigate treatment options. However, the complexity of neuro-oncological conditions and the cognitive and emotional burdens on patients present significant barriers to achieving effective SDM. This discussion explores the potential of large language models (LLMs) such as OpenAI's ChatGPT and Google's Bard to overcome these barriers, offering a means to enhance patient understanding and engagement in their care. LLMs, by providing accessible, personalized information, could support but not supplant the critical insights of healthcare professionals. The hypothesis suggests that patients, better informed through LLMs, may participate more actively in their treatment choices. Integrating LLMs into neuro-oncology requires navigating ethical considerations, including safeguarding patient data and ensuring informed consent, alongside the judicious use of AI technologies. Future efforts should focus on establishing ethical guidelines, adapting healthcare workflows, promoting patient-oriented research, and developing training programs for clinicians on the use of LLMs. Continuous evaluation of LLM applications will be vital to maintain their effectiveness and alignment with patient needs. Ultimately, this exploration contends that the thoughtful integration of LLMs into SDM processes could significantly enhance patient involvement and strengthen the patient-physician relationship in neuro-oncology care.

摘要

在神经肿瘤学中,共享决策(SDM)至关重要,它促进了患者和医疗保健专业人员之间的合作,以选择治疗方案。然而,神经肿瘤学状况的复杂性以及患者的认知和情感负担,给实现有效的 SDM 带来了重大障碍。本讨论探讨了大型语言模型(LLM)如 OpenAI 的 ChatGPT 和 Google 的 Bard 克服这些障碍的潜力,为增强患者对其护理的理解和参与提供了一种手段。LLM 通过提供可访问的、个性化的信息,可以支持而不是替代医疗保健专业人员的关键见解。该假说表明,通过 LLM 获得更好信息的患者可能会更积极地参与他们的治疗选择。将 LLM 整合到神经肿瘤学中需要考虑伦理问题,包括保护患者数据和确保知情同意,以及明智地使用人工智能技术。未来的努力应侧重于制定伦理准则、调整医疗保健工作流程、促进以患者为中心的研究以及为临床医生制定关于使用 LLM 的培训计划。对 LLM 应用程序的持续评估对于保持其有效性和符合患者需求至关重要。最终,本探索认为,将 LLM 谨慎地整合到 SDM 流程中,可以显著增强患者的参与度,并加强神经肿瘤学护理中的医患关系。

相似文献

1
Large language models as decision aids in neuro-oncology: a review of shared decision-making applications.
J Cancer Res Clin Oncol. 2024 Mar 19;150(3):139. doi: 10.1007/s00432-024-05673-x.
3
The Role of Large Language Models in Transforming Emergency Medicine: Scoping Review.
JMIR Med Inform. 2024 May 10;12:e53787. doi: 10.2196/53787.
6
Utilizing large language models for gastroenterology research: a conceptual framework.
Therap Adv Gastroenterol. 2025 Apr 1;18:17562848251328577. doi: 10.1177/17562848251328577. eCollection 2025.
8
Academic Surgery in the Era of Large Language Models: A Review.
JAMA Surg. 2024 Apr 1;159(4):445-450. doi: 10.1001/jamasurg.2023.6496.

引用本文的文献

1
Research progress and implications of the application of large language model in shared decision-making in China's healthcare field.
Front Public Health. 2025 Jul 10;13:1605212. doi: 10.3389/fpubh.2025.1605212. eCollection 2025.
2
AI in Medical Questionnaires: Innovations, Diagnosis, and Implications.
J Med Internet Res. 2025 Jun 23;27:e72398. doi: 10.2196/72398.
3
Fine-Tuning Large Language Models for Specialized Use Cases.
Mayo Clin Proc Digit Health. 2024 Nov 29;3(1):100184. doi: 10.1016/j.mcpdig.2024.11.005. eCollection 2025 Mar.
4
Using mathematical modelling and AI to improve delivery and efficacy of therapies in cancer.
Nat Rev Cancer. 2025 May;25(5):324-340. doi: 10.1038/s41568-025-00796-w. Epub 2025 Feb 19.
7
Application of large language models in disease diagnosis and treatment.
Chin Med J (Engl). 2025 Jan 20;138(2):130-142. doi: 10.1097/CM9.0000000000003456. Epub 2024 Dec 26.
8
Autonomous medical evaluation for guideline adherence of large language models.
NPJ Digit Med. 2024 Dec 12;7(1):358. doi: 10.1038/s41746-024-01356-6.

本文引用的文献

1
Almanac - Retrieval-Augmented Language Models for Clinical Medicine.
NEJM AI. 2024 Feb;1(2). doi: 10.1056/aioa2300068. Epub 2024 Jan 25.
3
ChatGPT in healthcare: A taxonomy and systematic review.
Comput Methods Programs Biomed. 2024 Mar;245:108013. doi: 10.1016/j.cmpb.2024.108013. Epub 2024 Jan 15.
5
Information Quality and Readability: ChatGPT's Responses to the Most Common Questions About Spinal Cord Injury.
World Neurosurg. 2024 Jan;181:e1138-e1144. doi: 10.1016/j.wneu.2023.11.062. Epub 2023 Nov 22.
6
To protect science, we must use LLMs as zero-shot translators.
Nat Hum Behav. 2023 Nov;7(11):1830-1832. doi: 10.1038/s41562-023-01744-0.
9
Potential for GPT Technology to Optimize Future Clinical Decision-Making Using Retrieval-Augmented Generation.
Ann Biomed Eng. 2024 May;52(5):1115-1118. doi: 10.1007/s10439-023-03327-6. Epub 2023 Aug 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验