School of Public Health Sciences, University of Waterloo, Waterloo, ON, Canada.
Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON, Canada.
JMIR Public Health Surveill. 2024 Mar 20;10:e46903. doi: 10.2196/46903.
The COVID-19 pandemic necessitated public health policies to limit human mobility and curb infection spread. Human mobility, which is often underestimated, plays a pivotal role in health outcomes, impacting both infectious and chronic diseases. Collecting precise mobility data is vital for understanding human behavior and informing public health strategies. Google's GPS-based location tracking, which is compiled in Google Mobility Reports, became the gold standard for monitoring outdoor mobility during the pandemic. However, indoor mobility remains underexplored.
This study investigates in-home mobility data from ecobee's smart thermostats in Canada (February 2020 to February 2021) and compares it directly with Google's residential mobility data. By assessing the suitability of smart thermostat data, we aim to shed light on indoor mobility patterns, contributing valuable insights to public health research and strategies.
Motion sensor data were acquired from the ecobee "Donate Your Data" initiative via Google's BigQuery cloud platform. Concurrently, residential mobility data were sourced from the Google Mobility Report. This study centered on 4 Canadian provinces-Ontario, Quebec, Alberta, and British Columbia-during the period from February 15, 2020, to February 14, 2021. Data processing, analysis, and visualization were conducted on the Microsoft Azure platform using Python (Python Software Foundation) and R programming languages (R Foundation for Statistical Computing). Our investigation involved assessing changes in mobility relative to the baseline in both data sets, with the strength of this relationship assessed using Pearson and Spearman correlation coefficients. We scrutinized daily, weekly, and monthly variations in mobility patterns across the data sets and performed anomaly detection for further insights.
The results revealed noteworthy week-to-week and month-to-month shifts in population mobility within the chosen provinces, aligning with pandemic-driven policy adjustments. Notably, the ecobee data exhibited a robust correlation with Google's data set. Examination of Google's daily patterns detected more pronounced mobility fluctuations during weekdays, a trend not mirrored in the ecobee data. Anomaly detection successfully identified substantial mobility deviations coinciding with policy modifications and cultural events.
This study's findings illustrate the substantial influence of the Canadian stay-at-home and work-from-home policies on population mobility. This impact was discernible through both Google's out-of-house residential mobility data and ecobee's in-house smart thermostat data. As such, we deduce that smart thermostats represent a valid tool for facilitating intelligent monitoring of population mobility in response to policy-driven shifts.
COVID-19 大流行需要公共卫生政策来限制人类流动并遏制感染传播。人类流动往往被低估,它在健康结果中起着关键作用,影响着传染病和慢性病。收集精确的流动数据对于了解人类行为和为公共卫生策略提供信息至关重要。谷歌基于 GPS 的位置跟踪,该跟踪包含在谷歌移动性报告中,成为监测大流行期间户外流动的黄金标准。然而,室内流动仍未得到充分探索。
本研究调查了加拿大 ecobee 智能恒温器的家庭内流动数据(2020 年 2 月至 2021 年 2 月),并将其与谷歌的住宅流动数据进行了直接比较。通过评估智能恒温器数据的适用性,我们旨在揭示室内流动模式,为公共卫生研究和策略提供有价值的见解。
运动传感器数据是通过谷歌的 BigQuery 云平台从 ecobee 的“捐赠您的数据”计划中获取的。同时,住宅流动数据来自谷歌移动报告。本研究集中在 2020 年 2 月 15 日至 2021 年 2 月 14 日期间的加拿大 4 个省-安大略省、魁北克省、艾伯塔省和不列颠哥伦比亚省。数据处理、分析和可视化是在 Microsoft Azure 平台上使用 Python(Python 软件基金会)和 R 编程语言(R 基金会)进行的。我们的研究涉及评估两个数据集内相对于基线的流动性变化,使用 Pearson 和 Spearman 相关系数评估这种关系的强度。我们研究了两个数据集之间的日常、每周和每月流动模式变化,并进行了异常检测以获得进一步的见解。
结果显示,在所选择的省份内,人口流动性每周和每月都有显著变化,与大流行驱动的政策调整一致。值得注意的是,ecobee 数据与谷歌数据集具有很强的相关性。对谷歌的日常模式的检查显示,工作日期间流动性波动更为明显,而 ecobee 数据中没有这种趋势。异常检测成功识别了与政策修改和文化事件相符的大规模流动性偏差。
本研究的结果表明,加拿大的就地避难和在家工作政策对人口流动产生了重大影响。这一影响可以通过谷歌的户外住宅流动数据和 ecobee 的室内智能恒温器数据来识别。因此,我们推断智能恒温器是一种有效的工具,可以促进对政策驱动的变化做出反应的人口流动的智能监测。