Suppr超能文献

在线适应框架可实现中风患者运动过程中外骨骼辅助的个性化。

Online Adaptation Framework Enables Personalization of Exoskeleton Assistance During Locomotion in Patients Affected by Stroke.

作者信息

Kang Inseung, Molinaro Dean D, Park Dongho, Lee Dawit, Kunapuli Pratik, Herrin Kinsey R, Young Aaron J

机构信息

Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 USA.

Robotics and AI (RAI) Institute, Cambridge, MA 02142 USA.

出版信息

IEEE Trans Robot. 2025;41:4941-4959. doi: 10.1109/tro.2025.3595701. Epub 2025 Aug 4.

Abstract

Robotic exoskeletons can transform mobility for individuals with lower-limb disabilities. However, their widespread adoption is limited by controller degradation caused by varying gait dynamics across different users and environments. Here, we propose an online adaptation framework that leverages real-time data streams to continuously update the user state estimator model. This approach allows the exoskeleton to learn the user-specific gait patterns, effectively customizing the model for each new user. Additionally, we demonstrate a sensor signal transformation technique that enables model transfer across different exoskeleton hardware (from a research-grade exoskeleton to a commercial device). With less than one minute of adaptation, our framework improved gait phase estimation, which directly affects assistance timing, by 40.9% for able-bodied subjects and 65.9% for stroke survivors (p<0.05), and reduced torque profile error by 32.7% compared to the baseline model (p<0.05). Furthermore, in a pilot test, we applied our adaptation framework with human-in-the-loop optimization for control tuning. In a single stroke survivor, this approach led to a 21.8% increase in walking speed and a 6.5% reduction in metabolic cost compared to walking without exoskeleton. While preliminary, these results suggest the potential for personalized exoskeleton assistance in clinical populations.

摘要

机器人外骨骼可以改变下肢残疾人士的行动能力。然而,它们的广泛应用受到不同用户和环境中步态动态变化导致的控制器性能下降的限制。在此,我们提出了一个在线自适应框架,该框架利用实时数据流来持续更新用户状态估计模型。这种方法使外骨骼能够学习用户特定的步态模式,有效地为每个新用户定制模型。此外,我们展示了一种传感器信号转换技术,该技术能够在不同的外骨骼硬件之间(从研究级外骨骼到商业设备)进行模型转移。经过不到一分钟的自适应,我们的框架将直接影响辅助时机的步态相位估计提高了:健全受试者提高了40.9%,中风幸存者提高了65.9%(p<0.05),并且与基线模型相比,扭矩分布误差降低了32.7%(p<0.05)。此外,在一项试点测试中,我们将带有闭环人工优化的自适应框架应用于控制调整。在一名中风幸存者中,与不使用外骨骼行走相比,这种方法使步行速度提高了21.8%,代谢成本降低了6.5%。虽然这些结果尚属初步,但表明了个性化外骨骼辅助在临床人群中的潜力。

相似文献

7
Effect of Lower Limb Exoskeleton on the Modulation of Neural Activity and Gait Classification.下肢外骨骼对神经活动调节和步态分类的影响。
IEEE Trans Neural Syst Rehabil Eng. 2023;31:2988-3003. doi: 10.1109/TNSRE.2023.3294435. Epub 2023 Jul 28.

本文引用的文献

8
Ultra-Robust Real-Time Estimation of Gait Phase.超稳健实时步态相位估计
IEEE Trans Neural Syst Rehabil Eng. 2022;30:2793-2801. doi: 10.1109/TNSRE.2022.3207919. Epub 2022 Oct 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验