Suppr超能文献

在执行高要求认知任务(亚里士多德三段论)期间,利用脑电图提取的非线性复杂度和小波提取的功率节律特征对神经性厌食症患者进行优化分类。

Using Electroencephalogram-Extracted Nonlinear Complexity and Wavelet-Extracted Power Rhythm Features during the Performance of Demanding Cognitive Tasks (Aristotle's Syllogisms) in Optimally Classifying Patients with Anorexia Nervosa.

作者信息

Karavia Anna, Papaioannou Anastasia, Michopoulos Ioannis, Papageorgiou Panos C, Papaioannou George, Gonidakis Fragiskos, Papageorgiou Charalabos C

机构信息

Eating Disorder Unit, 2nd Department of Psychiatry, Medical School, National & Kapodistrian University of Athens, 'Attikon' University Hospital, 1 Rimini St., 12462 Athens, Greece.

1st Department of Psychiatry, Medical School, National & Kapodistrian University of Athens, Eginition Hospital, 74 Vas. Sofias Ave., 11528 Athens, Greece.

出版信息

Brain Sci. 2024 Mar 4;14(3):251. doi: 10.3390/brainsci14030251.

Abstract

Anorexia nervosa is associated with impaired cognitive flexibility and central coherence, i.e., the ability to provide an overview of complex information. Therefore, the aim of the present study was to evaluate EEG features elicited from patients with anorexia nervosa and healthy controls during mental tasks (valid and invalid Aristotelian syllogisms and paradoxes). Particularly, we examined the combination of the most significant syllogisms with selected features (relative power of the time-frequency domain and wavelet-estimated EEG-specific waves, Higuchi fractal dimension (HFD), and information-oriented approximate entropy (AppEn)). We found that alpha, beta, gamma, theta waves, and AppEn are the most suitable measures, which, when combined with specific syllogisms, form a powerful tool for efficiently classifying healthy subjects and patients with AN. We assessed the performance of triadic combinations of "feature-classifier-syllogism" via machine learning techniques in correctly classifying new subjects in these two groups. The following triads attain the best classifications: (a) "AppEn-invalid-ensemble BT classifier" (accuracy 83.3%), (b) "Higuchi FD-valid-linear discriminant" (accuracy 75%), (c) "alpha amplitude-valid-SVM" (accuracy 83.3%), (d) "alpha RP-paradox-ensemble BT" (accuracy 85%), (e) "beta RP-valid-ensemble" (accuracy 85%), (f) "gamma RP-valid-SVM" (accuracy 85%), and (g) "theta RP-valid-KNN" (accuracy 80%). Our findings suggest that anorexia nervosa has a specific information-processing style across reasoning tasks in the brain as measured via EEG activity. Our findings also contribute to further supporting the view that entropy-oriented, i.e., information-based features (the AppEn measure used in this study) are promising diagnostic tools (biomarkers) in clinical applications related to medical classification problems. Furthermore, the main EEG-specific frequency waves are extremely enhanced and become powerful classification tools when combined with Aristotle's syllogisms.

摘要

神经性厌食症与认知灵活性受损和整体连贯性受损有关,即对复杂信息进行概述的能力。因此,本研究的目的是评估在执行心理任务(有效和无效的亚里士多德三段论及悖论)期间,神经性厌食症患者和健康对照者的脑电图特征。具体而言,我们研究了最显著的三段论与选定特征(时频域相对功率、小波估计的脑电图特定波、 Higuchi 分形维数 (HFD) 和面向信息的近似熵 (AppEn))的组合。我们发现,α波、β波、γ波、θ波和AppEn是最合适的测量指标,当与特定三段论结合时,它们构成了一种强大的工具,可有效地对健康受试者和神经性厌食症患者进行分类。我们通过机器学习技术评估了“特征 - 分类器 - 三段论”三元组合在正确分类这两组新受试者方面的性能。以下三元组实现了最佳分类:(a) “AppEn - 无效 - 集成BT分类器”(准确率83.3%),(b) “Higuchi FD - 有效 - 线性判别”(准确率75%),(c) “α波幅度 - 有效 - 支持向量机”(准确率83.3%),(d) “α波相对功率 - 悖论 - 集成BT”(准确率85%),(e) “β波相对功率 - 有效 - 集成”(准确率85%),(f) “γ波相对功率 - 有效 - 支持向量机”(准确率85%),以及(g) “θ波相对功率 - 有效 - K近邻”(准确率80%)。我们的研究结果表明,通过脑电图活动测量,神经性厌食症在大脑的推理任务中具有特定的信息处理方式。我们的研究结果还进一步支持了以下观点,即面向熵的,即基于信息的特征(本研究中使用的AppEn测量指标)是与医学分类问题相关的临床应用中有前景的诊断工具(生物标志物)。此外,主要的脑电图特定频率波在与亚里士多德三段论结合时会极大增强,并成为强大的分类工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ce7/10969099/54c90c1969d0/brainsci-14-00251-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验