Suppr超能文献

视觉Go/NoGo任务中事件相关脑电位的机器学习分类

Machine Learning Classification of Event-Related Brain Potentials during a Visual Go/NoGo Task.

作者信息

Bryniarska Anna, Ramos José A, Fernández Mercedes

机构信息

Department of Computer Science, Opole University of Technology, 45-758 Opole, Poland.

College of Computing and Engineering, Nova Southeastern University, Fort Lauderdale, FL 33314, USA.

出版信息

Entropy (Basel). 2024 Feb 29;26(3):220. doi: 10.3390/e26030220.

Abstract

Machine learning (ML) methods are increasingly being applied to analyze biological signals. For example, ML methods have been successfully applied to the human electroencephalogram (EEG) to classify neural signals as pathological or non-pathological and to predict working memory performance in healthy and psychiatric patients. ML approaches can quickly process large volumes of data to reveal patterns that may be missed by humans. This study investigated the accuracy of ML methods at classifying the brain's electrical activity to cognitive events, i.e., event-related brain potentials (ERPs). ERPs are extracted from the ongoing EEG and represent electrical potentials in response to specific events. ERPs were evoked during a visual Go/NoGo task. The Go/NoGo task requires a button press on Go trials and response withholding on NoGo trials. NoGo trials elicit neural activity associated with inhibitory control processes. We compared the accuracy of six ML algorithms at classifying the ERPs associated with each trial type. The raw electrical signals were fed to all ML algorithms to build predictive models. The same raw data were then truncated in length and fitted to multiple dynamic state space models of order nx using a continuous-time subspace-based system identification algorithm. The 4nx numerator and denominator parameters of the transfer function of the state space model were then used as substitutes for the data. Dimensionality reduction simplifies classification, reduces noise, and may ultimately improve the predictive power of ML models. Our findings revealed that all ML methods correctly classified the electrical signal associated with each trial type with a high degree of accuracy, and accuracy remained high after parameterization was applied. We discuss the models and the usefulness of the parameterization.

摘要

机器学习(ML)方法越来越多地被应用于分析生物信号。例如,ML方法已成功应用于人类脑电图(EEG),以将神经信号分类为病理性或非病理性,并预测健康和精神疾病患者的工作记忆表现。ML方法可以快速处理大量数据,以揭示人类可能错过的模式。本研究调查了ML方法在将大脑的电活动分类为认知事件,即事件相关脑电位(ERP)方面的准确性。ERP是从持续的EEG中提取的,代表对特定事件的电电位。ERP是在视觉Go/NoGo任务期间诱发的。Go/NoGo任务要求在Go试验中按下按钮,在NoGo试验中不做反应。NoGo试验引发与抑制控制过程相关的神经活动。我们比较了六种ML算法在对与每种试验类型相关的ERP进行分类时的准确性。原始电信号被输入到所有ML算法中以建立预测模型。然后将相同的原始数据截断长度,并使用基于连续时间子空间的系统识别算法拟合到多个阶数为nx的动态状态空间模型。然后将状态空间模型传递函数的4nx个分子和分母参数用作数据的替代物。降维简化了分类,减少了噪声,并最终可能提高ML模型的预测能力。我们的研究结果表明,所有ML方法都能以高度的准确性正确分类与每种试验类型相关的电信号,并且在应用参数化后准确性仍然很高。我们讨论了模型和参数化的有用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07cf/11670797/89918ee845fa/entropy-26-00220-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验