Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan.
McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Cancer Sci. 2024 Jun;115(6):1924-1935. doi: 10.1111/cas.16162. Epub 2024 Mar 28.
In childhood acute lymphoblastic leukemia (ALL), TP53 gene mutation is associated with chemoresistance in a certain population of relapsed cases. To directly verify the association of TP53 gene mutation with chemoresistance of relapsed childhood ALL cases and improve their prognosis, the development of appropriate human leukemia models having TP53 mutation in the intrinsic gene is required. Here, we sought to introduce R248Q hotspot mutation into the intrinsic TP53 gene in an ALL cell line, 697, by applying a prime editing (PE) system, which is a versatile genome editing technology. The PE2 system uses an artificial fusion of nickase Cas9 and reverse-transcriptase to directly place new genetic information into a target site through a reverse transcriptase template in the prime editing guide RNA (pegRNA). Moreover, in the advanced PE3b system, single guide RNA (sgRNA) matching the edited sequence is also introduced to improve editing efficiency. The initially obtained MDM2 inhibitor-resistant PE3b-transfected subline revealed disrupted p53 transactivation activity, reduced p53 target gene expression, and acquired resistance to chemotherapeutic agents and irradiation. Although the majority of the subline acquired the designed R248Q and adjacent silent mutations, the insertion of the palindromic sequence in the scaffold hairpin structure of pegRNA and the overlap of the original genomic DNA sequence were frequently observed. Targeted next-generation sequencing reconfirmed frequent edit errors in both PE2 and PE3b-transfected 697 cells, and it revealed frequent successful edits in HEK293T cells. These observations suggest a requirement for further modification of the PE2 and PE3b systems for accurate editing in leukemic cells.
在儿童急性淋巴细胞白血病 (ALL) 中,TP53 基因突变与某些复发病例的化疗耐药性有关。为了直接验证 TP53 基因突变与复发儿童 ALL 病例化疗耐药性的关联,并改善其预后,需要开发具有内在基因 TP53 突变的合适人类白血病模型。在这里,我们试图通过应用一种通用的基因组编辑技术——prime editing (PE) 系统,在 ALL 细胞系 697 中引入内在 TP53 基因中的 R248Q 热点突变。PE2 系统使用 Nickase Cas9 和逆转录酶的人工融合,通过 prime editing 向导 RNA (pegRNA) 中的逆转录酶模板,直接将新的遗传信息引入靶位点。此外,在先进的 PE3b 系统中,还引入了与编辑序列匹配的单指导 RNA (sgRNA),以提高编辑效率。最初获得的 MDM2 抑制剂耐药性的 PE3b 转染亚系显示出 p53 反式激活活性受损、p53 靶基因表达降低以及对化疗药物和辐射的耐药性。尽管该亚系的大多数细胞获得了设计的 R248Q 和相邻的沉默突变,但 pegRNA 支架发夹结构中的回文序列的插入和原始基因组 DNA 序列的重叠经常观察到。靶向下一代测序重新确认了 PE2 和 PE3b 转染的 697 细胞中频繁的编辑错误,并且它显示了 HEK293T 细胞中频繁的成功编辑。这些观察结果表明需要进一步修改 PE2 和 PE3b 系统,以实现白血病细胞中准确的编辑。