Suppr超能文献

在有限遗体捐赠项目环境中利用逼真3D模型进行虚拟现实神经解剖学训练的评估

The Evaluation of Virtual Reality Neuroanatomical Training Utilizing Photorealistic 3D Models in Limited Body Donation Program Settings.

作者信息

Trandzhiev Martin, Koundouras Theodoros, Milev Milko, Laleva Lili, Mitev Atanas, Stoykov Viktor, Dimitrov Nikolay, Maslarski Ivan, Nakov Vladimir, Spiriev Toma

机构信息

Department of Neurosurgery, Acibadem City Clinic University Hospital Tokuda, Sofia, BGR.

Department of Anatomy and Histology, Pathology and Forensic Medicine, University Hospital Lozenetz, Medical Faculty, Sofia University, Sofia, BGR.

出版信息

Cureus. 2024 Mar 2;16(3):e55377. doi: 10.7759/cureus.55377. eCollection 2024 Mar.

Abstract

Background Neuroanatomy is one of the most complex areas of anatomy to teach to medical students. Traditional study methods such as atlases and textbooks are mandatory but require significant effort to conceptualize the three-dimensional (3D) aspects of the neuroanatomical regions of interest. Objectives To test the feasibility of human anatomy teaching medical students in a virtual reality (VR) immersive environment using photorealistic three-dimensional models (PR3DM) of human anatomy, in a limited anatomical body donation program. Methods We used surface scanning technology (photogrammetry) to create PR3DM of brain dissections. The 3D models were uploaded to VR headsets and used in immersive environment classes to teach second-year medical students. Twenty-eight medical students (mean age 20.11, SD 1.42), among which 19 females (n=28/67.9%) and nine males (n=28/32.1%), participated in the study. The students had either none or minimal experience with the use of VR devices. The duration of the study was three months. After completing the curriculum, a survey was done to examine the results. Results The average rating of the students for their overall experience with the method is 4.57/5 (SD=0.63). The "Possibility to study models from many points of view" and "Good Visualization of the models" were the most agreed upon advantages, with 24 students (n=28, 85.7%), and 95% confidence intervals (CI) [0.6643, 0.9532]. The limited availability of the VR headsets was the major disadvantage as perceived by the students, with 11 students (n=28, 39.3%), 95% CI [0.2213, 0.5927] having voted for the option. The majority of the students (25) (n=28, 89.2%, SD=0.31) agreed with the statement that the use of VR facilitated their neuroanatomy education. Conclusion This study shows the future potential of this model of training in limited cadaver dissection options to provide students with modern technological methods of training. Our first results indicate a prominent level of student satisfaction from VR training with minimum negative reactions to the nature of headsets. The proof of concept for the application of photorealistic models in VR neuroanatomy training combined with the initial results of appreciation among the students predisposes the application of the method on a larger scale, adding a nuance to the traditional anatomy training methods. The low number of headsets used in the study limits the generalization of the results but offers possibilities for future perspectives of research.

摘要

背景

神经解剖学是医学学生解剖学教学中最复杂的领域之一。传统的学习方法,如图集和教科书是必不可少的,但要将感兴趣的神经解剖区域的三维(3D)方面概念化需要付出巨大努力。目的:在有限的人体解剖捐赠项目中,测试使用人体解剖的逼真三维模型(PR3DM)在虚拟现实(VR)沉浸式环境中对医学学生进行人体解剖教学的可行性。方法:我们使用表面扫描技术(摄影测量法)创建脑部分解的PR3DM。将3D模型上传到VR头显中,并用于沉浸式环境课程,以教授二年级医学生。28名医学生(平均年龄20.11岁,标准差1.42)参与了该研究,其中19名女性(n = 28/67.9%)和9名男性(n = 28/32.1%)。这些学生使用VR设备的经验很少或没有经验。研究持续时间为三个月。完成课程后,进行了一项调查以检查结果。结果:学生对该方法总体体验的平均评分为4.57/5(标准差 = 0.63)。“能够从多个角度研究模型”和“模型的良好可视化”是最受认可的优点,分别有24名学生(n = 28,85.7%)认可,95%置信区间(CI)为[0.6643, 0.9532]。VR头显数量有限是学生认为的主要缺点,有11名学生(n = 28,39.3%)选择了该选项,95% CI为[0.2213, 0.5927]。大多数学生(25名)(n = 28,89.2%,标准差 = 0.31)同意使用VR促进了他们的神经解剖学教育这一说法。结论:本研究表明,在有限的尸体解剖选择情况下,这种培训模式在为学生提供现代技术培训方法方面具有未来潜力。我们的初步结果表明,学生对VR培训的满意度很高,对头戴设备的性质负面反应最小。逼真模型在VR神经解剖学培训中的应用概念验证以及学生中初步的赞赏结果有利于该方法在更大规模上的应用,为传统解剖学培训方法增添了细微差别。本研究中使用的头显数量较少限制了结果的推广,但为未来的研究提供了可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d692/10983822/8b7091e683ee/cureus-0016-00000055377-i01.jpg

相似文献

2
Immersive Photorealistic Three-Dimensional Neurosurgical Anatomy of the Cerebral Arteries: A Photogrammetry-Based Anatomic Study.
Oper Neurosurg (Hagerstown). 2024 Nov 1;27(5):597-607. doi: 10.1227/ons.0000000000001198. Epub 2024 Sep 10.
3
Creating a neuroanatomy education model with augmented reality and virtual reality simulations of white matter tracts.
J Neurosurg. 2024 Apr 26;141(3):865-874. doi: 10.3171/2024.2.JNS2486. Print 2024 Sep 1.
4
Immersive virtual reality as a teaching tool for neuroanatomy.
Int Forum Allergy Rhinol. 2017 Oct;7(10):1006-1013. doi: 10.1002/alr.21986. Epub 2017 Jul 18.
5
A comparison of virtual reality anatomy models to prosections in station-based anatomy teaching.
Anat Sci Educ. 2024 Jun;17(4):763-769. doi: 10.1002/ase.2419. Epub 2024 Apr 7.
6
Medical Student Perception of a Virtual Reality Training Module for Anatomy Education.
Med Sci Educ. 2020 Jun 9;30(3):1201-1210. doi: 10.1007/s40670-020-00993-2. eCollection 2020 Sep.
7
Three-Dimensional Immersive Photorealistic Layered Dissection of Superficial and Deep Back Muscles: Anatomical Study.
Cureus. 2022 Jul 11;14(7):e26727. doi: 10.7759/cureus.26727. eCollection 2022 Jul.
8
Developing 3D models using photogrammetry for virtual reality training in anatomy.
Anat Sci Educ. 2023 Nov-Dec;16(6):1033-1040. doi: 10.1002/ase.2301. Epub 2023 May 29.
9
3D virtual reality simulation in radiography education: The students' experience.
Radiography (Lond). 2021 Feb;27(1):208-214. doi: 10.1016/j.radi.2020.07.017. Epub 2020 Aug 13.
10
Stereoscopic neuroanatomy lectures using a three-dimensional virtual reality environment.
Ann Anat. 2015 Sep;201:91-8. doi: 10.1016/j.aanat.2015.05.006. Epub 2015 Jul 6.

引用本文的文献

1
Challenges in studying neuroanatomy in sub-Saharan Africa: The case of Cameroon.
Brain Spine. 2025 Apr 21;5:104259. doi: 10.1016/j.bas.2025.104259. eCollection 2025.
2
Could virtual reality be a solution in surgical trainings in resource-restricted settings? A perspective.
Surg Open Sci. 2024 Aug 26;21:14-16. doi: 10.1016/j.sopen.2024.08.004. eCollection 2024 Sep.
3
A spotlight on cadaveric dissection in neurosurgical training: The perspective of the EANS young neurosurgeons committee.
Brain Spine. 2024 May 23;4:102839. doi: 10.1016/j.bas.2024.102839. eCollection 2024.

本文引用的文献

1
Neuroanatomy in virtual reality: Development and pedagogical evaluation of photogrammetry-based 3D brain models.
Anat Sci Educ. 2024 Mar;17(2):239-248. doi: 10.1002/ase.2359. Epub 2023 Nov 23.
2
Photogrammetry Applied to Neurosurgery: A Literature Review.
Cureus. 2023 Sep 30;15(9):e46251. doi: 10.7759/cureus.46251. eCollection 2023 Sep.
4
Photorealistic 3-Dimensional Models of the Anatomy and Neurosurgical Approaches to the V2, V3, and V4 Segments of the Vertebral Artery.
Oper Neurosurg (Hagerstown). 2023 Jul 1;25(1):e15-e21. doi: 10.1227/ons.0000000000000701. Epub 2023 May 26.
6
Virtual neurosurgery anatomy laboratory: A collaborative and remote education experience in the metaverse.
Surg Neurol Int. 2023 Mar 17;14:90. doi: 10.25259/SNI_162_2023. eCollection 2023.
8
Use of 3-Dimensional Modeling and Augmented/Virtual Reality Applications in Microsurgical Neuroanatomy Training.
Oper Neurosurg (Hagerstown). 2023 Mar 1;24(3):318-323. doi: 10.1227/ons.0000000000000524. Epub 2022 Nov 28.
9
Three-Dimensional Immersive Photorealistic Layered Dissection of Superficial and Deep Back Muscles: Anatomical Study.
Cureus. 2022 Jul 11;14(7):e26727. doi: 10.7759/cureus.26727. eCollection 2022 Jul.
10
Qlone®: A Simple Method to Create 360-Degree Photogrammetry-Based 3-Dimensional Model of Cadaveric Specimens.
Oper Neurosurg (Hagerstown). 2021 Nov 15;21(6):E488-E493. doi: 10.1093/ons/opab355.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验