Department of Computer Engineering, Engineering Faculty, Erciyes University, 38039, Kayseri, Turkey.
Artificial Intelligence and Big Data Application and Research Center, Erciyes University, Kayseri, Turkey.
J Imaging Inform Med. 2024 Oct;37(5):2559-2580. doi: 10.1007/s10278-024-01086-x. Epub 2024 Apr 2.
This study aims to provide an effective solution for the autonomous identification of dental implant brands through a deep learning-based computer diagnostic system. It also seeks to ascertain the system's potential in clinical practices and to offer a strategic framework for improving diagnosis and treatment processes in implantology. This study employed a total of 28 different deep learning models, including 18 convolutional neural network (CNN) models (VGG, ResNet, DenseNet, EfficientNet, RegNet, ConvNeXt) and 10 vision transformer models (Swin and Vision Transformer). The dataset comprises 1258 panoramic radiographs from patients who received implant treatments at Erciyes University Faculty of Dentistry between 2012 and 2023. It is utilized for the training and evaluation process of deep learning models and consists of prototypes from six different implant systems provided by six manufacturers. The deep learning-based dental implant system provided high classification accuracy for different dental implant brands using deep learning models. Furthermore, among all the architectures evaluated, the small model of the ConvNeXt architecture achieved an impressive accuracy rate of 94.2%, demonstrating a high level of classification success.This study emphasizes the effectiveness of deep learning-based systems in achieving high classification accuracy in dental implant types. These findings pave the way for integrating advanced deep learning tools into clinical practice, promising significant improvements in patient care and treatment outcomes.
本研究旨在通过基于深度学习的计算机诊断系统,为牙科种植体品牌的自主识别提供有效解决方案。本研究还旨在确定该系统在临床实践中的潜力,并为改善种植学的诊断和治疗流程提供战略框架。本研究共使用了 28 种不同的深度学习模型,包括 18 种卷积神经网络(CNN)模型(VGG、ResNet、DenseNet、EfficientNet、RegNet、ConvNeXt)和 10 种视觉转换器模型(Swin 和 Vision Transformer)。该数据集包含了 2012 年至 2023 年期间在埃尔吉耶斯大学牙科学院接受种植治疗的 1258 张全景片。它被用于深度学习模型的训练和评估过程,由六个制造商提供的六个不同种植系统的原型组成。基于深度学习的牙科种植体系统使用深度学习模型对不同的牙科种植体品牌提供了较高的分类准确性。此外,在所评估的所有架构中,ConvNeXt 架构的小模型达到了令人印象深刻的 94.2%准确率,显示出较高的分类成功率。本研究强调了基于深度学习的系统在实现牙科种植体类型的高分类准确性方面的有效性。这些发现为将先进的深度学习工具集成到临床实践中铺平了道路,有望在患者护理和治疗结果方面取得重大改进。