Qu Hui, Zhou Mu, Yan Zhennan, Wang He, Rustgi Vinod K, Zhang Shaoting, Gevaert Olivier, Metaxas Dimitris N
Department of Computer Science, Rutgers University, Piscataway, NJ, USA.
Sensebrain Research, Princeton, NJ, USA.
NPJ Precis Oncol. 2021 Sep 23;5(1):87. doi: 10.1038/s41698-021-00225-9.
Breast carcinoma is the most common cancer among women worldwide that consists of a heterogeneous group of subtype diseases. The whole-slide images (WSIs) can capture the cell-level heterogeneity, and are routinely used for cancer diagnosis by pathologists. However, key driver genetic mutations related to targeted therapies are identified by genomic analysis like high-throughput molecular profiling. In this study, we develop a deep-learning model to predict the genetic mutations and biological pathway activities directly from WSIs. Our study offers unique insights into WSI visual interactions between mutation and its related pathway, enabling a head-to-head comparison to reinforce our major findings. Using the histopathology images from the Genomic Data Commons Database, our model can predict the point mutations of six important genes (AUC 0.68-0.85) and copy number alteration of another six genes (AUC 0.69-0.79). Additionally, the trained models can predict the activities of three out of ten canonical pathways (AUC 0.65-0.79). Next, we visualized the weight maps of tumor tiles in WSI to understand the decision-making process of deep-learning models via a self-attention mechanism. We further validated our models on liver and lung cancers that are related to metastatic breast cancer. Our results provide insights into the association between pathological image features, molecular outcomes, and targeted therapies for breast cancer patients.
乳腺癌是全球女性中最常见的癌症,它由一组异质性的亚型疾病组成。全切片图像(WSIs)可以捕捉细胞水平的异质性,并且病理学家经常将其用于癌症诊断。然而,与靶向治疗相关的关键驱动基因突变是通过高通量分子谱分析等基因组分析来识别的。在本研究中,我们开发了一种深度学习模型,可直接从WSIs预测基因突变和生物通路活性。我们的研究为突变与其相关通路之间的WSI视觉相互作用提供了独特见解,能够进行直接比较以强化我们的主要发现。利用来自基因组数据共享数据库的组织病理学图像,我们的模型可以预测六个重要基因的点突变(AUC为0.68 - 0.85)以及另外六个基因的拷贝数改变(AUC为0.69 - 0.79)。此外,经过训练的模型可以预测十条经典通路中三条的活性(AUC为0.65 - 0.79)。接下来,我们可视化了WSI中肿瘤切片的权重图,以通过自注意力机制了解深度学习模型的决策过程。我们进一步在与转移性乳腺癌相关的肝癌和肺癌上验证了我们的模型。我们的结果为乳腺癌患者的病理图像特征、分子结果和靶向治疗之间的关联提供了见解。