Suppr超能文献

用于预测食管癌患者生存率的深度学习模型的开发与验证

Development and validation of a deep learning model to predict survival of patients with esophageal cancer.

作者信息

Huang Chen, Dai Yongmei, Chen Qianshun, Chen Hongchao, Lin Yuanfeng, Wu Jingyu, Xu Xunyu, Chen Xiao

机构信息

Shengli Clinical College of Fujian Medical University, Department of Thoracic Surgery, Fujian Provincial Hospital, Fuzhou, China.

Shengli Clinical College of Fujian Medical University, Department of Oncology, Fujian Provincial Hospital, Fuzhou, China.

出版信息

Front Oncol. 2022 Aug 10;12:971190. doi: 10.3389/fonc.2022.971190. eCollection 2022.

Abstract

OBJECTIVE

To compare the performance of a deep learning survival network with the tumor, node, and metastasis (TNM) staging system in survival prediction and test the reliability of individual treatment recommendations provided by the network.

METHODS

In this population-based cohort study, we developed and validated a deep learning survival model using consecutive cases of newly diagnosed stage I to IV esophageal cancer between January 2004 and December 2015 in a Surveillance, Epidemiology, and End Results (SEER) database. The model was externally validated in an independent cohort from Fujian Provincial Hospital. The C statistic was used to compare the performance of the deep learning survival model and TNM staging system. Two other deep learning risk prediction models were trained for treatment recommendations. A Kaplan-Meier survival curve was used to compare survival between the population that followed the recommended therapy and those who did not.

RESULTS

A total of 9069 patients were included in this study. The deep learning network showed more promising results in predicting esophageal cancer-specific survival than the TNM stage in the internal test dataset (C-index=0.753 vs. 0.638) and external validation dataset (C-index=0.687 vs. 0.643). The population who received the recommended treatments had superior survival compared to those who did not, based on the internal test dataset (hazard ratio, 0.753; 95% CI, 0.556-0.987; P=0.042) and the external validation dataset (hazard ratio, 0.633; 95% CI, 0.459-0.834; P=0.0003).

CONCLUSION

Deep learning neural networks have potential advantages over traditional linear models in prognostic assessment and treatment recommendations. This novel analytical approach may provide reliable information on individual survival and treatment recommendations for patients with esophageal cancer.

摘要

目的

比较深度学习生存网络与肿瘤、淋巴结及转移(TNM)分期系统在生存预测方面的表现,并测试该网络提供的个体化治疗建议的可靠性。

方法

在这项基于人群的队列研究中,我们利用监测、流行病学和最终结果(SEER)数据库中2004年1月至2015年12月期间新诊断的I至IV期食管癌连续病例,开发并验证了一个深度学习生存模型。该模型在福建省立医院的一个独立队列中进行了外部验证。使用C统计量来比较深度学习生存模型和TNM分期系统的表现。另外训练了两个深度学习风险预测模型用于治疗建议。采用Kaplan-Meier生存曲线比较遵循推荐治疗的人群与未遵循推荐治疗的人群之间的生存情况。

结果

本研究共纳入9069例患者。在内部测试数据集(C指数=0.753对0.638)和外部验证数据集(C指数=0.687对0.643)中,深度学习网络在预测食管癌特异性生存方面比TNM分期显示出更有前景的结果。基于内部测试数据集(风险比,0.753;95%可信区间,0.556 - 0.987;P = 0.042)和外部验证数据集(风险比,0.633;95%可信区间,0.459 - 0.834;P = 0.0003),接受推荐治疗的人群比未接受推荐治疗的人群生存情况更好。

结论

在预后评估和治疗建议方面,深度学习神经网络比传统线性模型具有潜在优势。这种新颖的分析方法可能为食管癌患者提供关于个体生存和治疗建议的可靠信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2687/9399685/03ae20c95bc0/fonc-12-971190-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验