Suppr超能文献

人工智能辅助探索创新中药方剂的文献研究

AI-assisted literature exploration of innovative Chinese medicine formulas.

作者信息

Chung Meng-Chi, Su Li-Jen, Chen Chien-Lin, Wu Li-Ching

机构信息

Department of Biomedical Science and Engineering, National Central University (NCU), Jhong-Li City, Taiwan.

Education and Research Center for Technology Assisted Substance Abuse Prevention and Management, National Central University (NCU), Taoyuan, Taiwan.

出版信息

Front Pharmacol. 2024 Mar 22;15:1347882. doi: 10.3389/fphar.2024.1347882. eCollection 2024.

Abstract

Our study provides an innovative approach to exploring herbal formulas that contribute to the promotion of sustainability and biodiversity conservation. We employ data mining, integrating keyword extraction, association rules, and LSTM-based generative models to analyze classical Traditional Chinese Medicine (TCM) texts. We systematically decode classical Chinese medical literature, conduct statistical analyses, and link these historical texts with modern pharmacogenomic references to explore potential alternatives. We present a novel iterative keyword extraction approach for discerning diverse herbs in historical TCM texts from the Pu-Ji Fang copies. Utilizing association rules, we uncover previously unexplored herb pairs. To bridge classical TCM herbal pairs with modern genetic relationships, we conduct gene-herb searches in PubMed and statistically validate this genetic literature as supporting evidence. We have expanded on the present work by developing a generative language model for suggesting innovative TCM formulations based on textual herb combinations. We collected associations with 7,664 PubMed cross-search entries for gene-herb and 934 for Shenqifuzheng Injection as a positive control. We analyzed 16,384 keyword combinations from Pu-Ji Fang's 426 volumes, employing statistical methods to probe gene-herb associations, focusing on examining differences among the target genes and Pu-Ji Fang herbs. Analyzing Pu-Ji Fang reveals a historical focus on flavor over medicinal aspects in TCM. We extend our work on developing a generative model from classical textual keywords to rapidly produces novel herbal compositions or TCM formulations. This integrated approach enhances our comprehension of TCM by merging ancient text analysis, modern genetic research, and generative modeling.

摘要

我们的研究提供了一种创新方法,用于探索有助于促进可持续性和生物多样性保护的中药配方。我们采用数据挖掘技术,整合关键词提取、关联规则和基于长短期记忆网络(LSTM)的生成模型,以分析经典中医文本。我们系统地解读古典中医文献,进行统计分析,并将这些历史文本与现代药物基因组学参考文献相联系,以探索潜在的替代方案。我们提出了一种新颖的迭代关键词提取方法,用于从《普济方》抄本中的历史中医文本中识别不同的草药。利用关联规则,我们发现了以前未被探索的草药对。为了将经典中医草药对与现代基因关系联系起来,我们在PubMed中进行基因-草药搜索,并对该基因文献进行统计验证,作为支持证据。我们通过开发一种基于文本草药组合的生成式语言模型来建议创新的中药配方,从而扩展了目前的工作。我们收集了7664条基因-草药的PubMed交叉搜索条目关联信息,以及934条参芪扶正注射液作为阳性对照的关联信息。我们分析了《普济方》426卷中的16384个关键词组合,采用统计方法探究基因-草药关联,重点考察目标基因与《普济方》草药之间的差异。对《普济方》的分析揭示了中医在历史上对药物性味而非药用方面的关注。我们将从经典文本关键词开发生成模型的工作扩展到快速生成新颖的草药组合物或中药配方。这种综合方法通过融合古代文本分析、现代基因研究和生成建模,增强了我们对中医的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f4/10995307/815d73081f78/fphar-15-1347882-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验