Suppr超能文献

评估深度学习模型在医疗服务不足人群原发性开角型青光眼诊断中的漏诊和过度诊断偏差。

Evaluate underdiagnosis and overdiagnosis bias of deep learning model on primary open-angle glaucoma diagnosis in under-served populations.

作者信息

Lin Mingquan, Xiao Yunyu, Hou Bojian, Wanyan Tingyi, Sharma Mohit Manoj, Wang Zhangyang, Wang Fei, Tassel Sarah Van, Peng Yifan

机构信息

Population Health Sciences, Weill Cornell Medicine, New York, NY, USA.

Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania.

出版信息

AMIA Jt Summits Transl Sci Proc. 2023 Jun 16;2023:370-377. eCollection 2023.

Abstract

In the United States, primary open-angle glaucoma (POAG) is the leading cause of blindness, especially among African American and Hispanic individuals. Deep learning has been widely used to detect POAG using fundus images as its performance is comparable to or even surpasses diagnosis by clinicians. However, human bias in clinical diagnosis may be reflected and amplified in the widely-used deep learning models, thus impacting their performance. Biases may cause (1) underdiagnosis, increasing the risks of delayed or inadequate treatment, and (2) overdiagnosis, which may increase individuals' stress, fear, well-being, and unnecessary/costly treatment. In this study, we examined the underdiagnosis and overdiagnosis when applying deep learning in POAG detection based on the Ocular Hypertension Treatment Study (OHTS) from 22 centers across 16 states in the United States. Our results show that the widely-used deep learning model can underdiagnose or overdiagnose under-served populations. The most underdiagnosed group is female younger (< 60 yrs) group, and the most overdiagnosed group is Black older (≥ 60 yrs) group. Biased diagnosis through traditional deep learning methods may delay disease detection, treatment and create burdens among under-served populations, thereby, raising ethical concerns about using deep learning models in ophthalmology clinics.

摘要

在美国,原发性开角型青光眼(POAG)是导致失明的主要原因,尤其是在非裔美国人和西班牙裔人群中。深度学习已被广泛用于通过眼底图像检测POAG,因为其性能与临床医生的诊断相当,甚至超过临床医生的诊断。然而,临床诊断中的人为偏差可能会在广泛使用的深度学习模型中得到反映和放大,从而影响其性能。偏差可能导致(1)漏诊,增加延迟治疗或治疗不足的风险,以及(2)过度诊断,这可能会增加个人的压力、恐惧、健康问题以及不必要的/昂贵的治疗。在本研究中,我们基于美国16个州22个中心的眼压治疗研究(OHTS),研究了在POAG检测中应用深度学习时的漏诊和过度诊断情况。我们的结果表明,广泛使用的深度学习模型可能会对服务不足的人群进行漏诊或过度诊断。漏诊最多的群体是年轻女性(<60岁)群体,过度诊断最多的群体是老年黑人(≥60岁)群体。通过传统深度学习方法进行的有偏差诊断可能会延迟疾病检测、治疗,并给服务不足的人群带来负担,从而引发在眼科诊所使用深度学习模型的伦理问题。

相似文献

2
Primary Open-Angle Glaucoma Diagnosis from Optic Disc Photographs Using a Siamese Network.
Ophthalmol Sci. 2022 Aug 13;2(4):100209. doi: 10.1016/j.xops.2022.100209. eCollection 2022 Dec.
3
Detecting Glaucoma in the Ocular Hypertension Study Using Deep Learning.
JAMA Ophthalmol. 2022 Apr 1;140(4):383-391. doi: 10.1001/jamaophthalmol.2022.0244.
4
Glaucoma Risk Alleles in the Ocular Hypertension Treatment Study.
Ophthalmology. 2016 Dec;123(12):2527-2536. doi: 10.1016/j.ophtha.2016.08.036. Epub 2016 Oct 1.
5
Multi-scale Multi-structure Siamese Network (MMSNet) for Primary Open-Angle Glaucoma Prediction.
Mach Learn Med Imaging. 2022 Sep;13583:436-445. doi: 10.1007/978-3-031-21014-3_45. Epub 2022 Dec 16.
6
Validated prediction model for the development of primary open-angle glaucoma in individuals with ocular hypertension.
Ophthalmology. 2007 Jan;114(1):10-9. doi: 10.1016/j.ophtha.2006.08.031. Epub 2006 Nov 7.
8
Racial and Ethnic Disparities in Primary Open-Angle Glaucoma Clinical Trials: A Systematic Review and Meta-analysis.
JAMA Netw Open. 2021 May 3;4(5):e218348. doi: 10.1001/jamanetworkopen.2021.8348.
9
Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-served patient populations.
Nat Med. 2021 Dec;27(12):2176-2182. doi: 10.1038/s41591-021-01595-0. Epub 2021 Dec 10.

引用本文的文献

1
Improving Fairness of Automated Chest Radiograph Diagnosis by Contrastive Learning.
Radiol Artif Intell. 2024 Sep;6(5):e230342. doi: 10.1148/ryai.230342.
2
Fairness-Aware Class Imbalanced Learning on Multiple Subgroups.
Proc Mach Learn Res. 2023 Aug;216:2123-2133.
3
Improving model fairness in image-based computer-aided diagnosis.
Nat Commun. 2023 Oct 6;14(1):6261. doi: 10.1038/s41467-023-41974-4.

本文引用的文献

1
Primary Open-Angle Glaucoma Diagnosis from Optic Disc Photographs Using a Siamese Network.
Ophthalmol Sci. 2022 Aug 13;2(4):100209. doi: 10.1016/j.xops.2022.100209. eCollection 2022 Dec.
2
Algorithmic fairness in computational medicine.
EBioMedicine. 2022 Oct;84:104250. doi: 10.1016/j.ebiom.2022.104250. Epub 2022 Sep 6.
4
Detecting Glaucoma in the Ocular Hypertension Study Using Deep Learning.
JAMA Ophthalmol. 2022 Apr 1;140(4):383-391. doi: 10.1001/jamaophthalmol.2022.0244.
5
Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-served patient populations.
Nat Med. 2021 Dec;27(12):2176-2182. doi: 10.1038/s41591-021-01595-0. Epub 2021 Dec 10.
6
Lessons Learned From 2 Large Community-based Glaucoma Screening Studies.
J Glaucoma. 2021 Oct 1;30(10):875-877. doi: 10.1097/IJG.0000000000001920.
8
Predicting Glaucoma before Onset Using Deep Learning.
Ophthalmol Glaucoma. 2020 Jul-Aug;3(4):262-268. doi: 10.1016/j.ogla.2020.04.012. Epub 2020 Apr 29.
9
Hidden in Plain Sight - Reconsidering the Use of Race Correction in Clinical Algorithms.
N Engl J Med. 2020 Aug 27;383(9):874-882. doi: 10.1056/NEJMms2004740. Epub 2020 Jun 17.
10
Gender imbalance in medical imaging datasets produces biased classifiers for computer-aided diagnosis.
Proc Natl Acad Sci U S A. 2020 Jun 9;117(23):12592-12594. doi: 10.1073/pnas.1919012117. Epub 2020 May 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验