Suppr超能文献

基于言语意象的脑电图信号识别辅音-元音-辅音单词中的元音。

Identification of vowels in consonant-vowel-consonant words from speech imagery based EEG signals.

作者信息

Chengaiyan Sandhya, Retnapandian Anandha Sree, Anandan Kavitha

机构信息

Department of Biomedical Engineering, Centre for Healthcare Technologies, SSN College of Engineering, Chennai, Tamilnadu India.

出版信息

Cogn Neurodyn. 2020 Feb;14(1):1-19. doi: 10.1007/s11571-019-09558-5. Epub 2019 Oct 4.

Abstract

Retrieval of unintelligible speech is a basic need for speech impaired and is under research for several decades. But retrieval of random words from thoughts needs a substantial and consistent approach. This work focuses on the preliminary steps of retrieving vowels from Electroencephalography (EEG) signals acquired while speaking and imagining of speaking a consonant-vowel-consonant (CVC) word. The process, referred to as Speech imagery is imagining of speaking to oneself silently in the mind. Speech imagery is a form of mental imagery. Brain connectivity estimators such as EEG coherence, Partial Directed Coherence, Directed Transfer Function and Transfer Entropy have been used to estimate the concurrency and causal dependence (direction and strength) between different brain regions. From brain connectivity results it has been observed that the left frontal and left temporal electrodes were activated for speech and speech imagery processes. These brain connectivity estimators have been used for training Recurrent Neural Networks (RNN) and Deep Belief Networks (DBN) for identifying the vowel from the subject's thought. Though the accuracy level was found to be varying for each vowel while speaking and imagining of speaking the CVC word, the overall classification accuracy was found to be 72% while using RNN whereas a classification accuracy of 80% was observed while using DBN. DBN was found to outperform RNN in both the speech and speech imagery processes. Thus, the combination of brain connectivity estimators and deep learning techniques appear to be effective in identifying the vowel from EEG signals of subjects' thought.

摘要

恢复难以理解的语音是言语障碍者的基本需求,并且已经研究了几十年。但是从思维中检索随机单词需要一种实质性且一致的方法。这项工作专注于从在说出和想象说出一个辅音-元音-辅音(CVC)单词时采集的脑电图(EEG)信号中检索元音的初步步骤。这个过程,即言语意象,是指在脑海中默默地对自己说话。言语意象是心理意象的一种形式。诸如EEG相干性、偏定向相干性、定向传递函数和转移熵等脑连接性估计器已被用于估计不同脑区之间的并发情况和因果依赖性(方向和强度)。从脑连接性结果可以观察到,左额叶和左颞叶电极在言语和言语意象过程中被激活。这些脑连接性估计器已被用于训练递归神经网络(RNN)和深度信念网络(DBN),以从受试者的思维中识别元音。虽然在说出和想象说出CVC单词时,每个元音的准确率各不相同,但使用RNN时总体分类准确率为72%,而使用DBN时观察到的分类准确率为80%。发现在言语和言语意象过程中DBN都优于RNN。因此,脑连接性估计器和深度学习技术的结合似乎在从受试者思维的EEG信号中识别元音方面是有效的。

相似文献

6
Temporal characteristics of speech in simultaneous communication.同步交流中言语的时间特征。
J Speech Hear Res. 1995 Oct;38(5):1014-24. doi: 10.1044/jshr.3805.1014.
7
Multifractal Analysis of Speech Imagery of IPA Vowels.国际音标元音语音意象的多重分形分析
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:1-4. doi: 10.1109/EMBC.2018.8512579.

引用本文的文献

3
Imagined speech classification exploiting EEG power spectrum features.利用 EEG 功率谱特征进行想象语音分类。
Med Biol Eng Comput. 2024 Aug;62(8):2529-2544. doi: 10.1007/s11517-024-03083-2. Epub 2024 Apr 18.
4
Integrating Simultaneous Motor Imagery and Spatial Attention for EEG-BCI Control.同时整合运动想象和空间注意于 EEG-BCI 控制。
IEEE Trans Biomed Eng. 2024 Jan;71(1):282-294. doi: 10.1109/TBME.2023.3298957. Epub 2023 Dec 22.
7
[Key technology of brain-computer interaction based on speech imagery].基于语音意象的脑机交互关键技术
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2022 Jun 25;39(3):596-611. doi: 10.7507/1001-5515.202107018.
8
A State-of-the-Art Review of EEG-Based Imagined Speech Decoding.基于脑电图的想象语音解码技术综述
Front Hum Neurosci. 2022 Apr 26;16:867281. doi: 10.3389/fnhum.2022.867281. eCollection 2022.
10
EEG Correlates of Middle Eastern Music Improvisations on the Instrument.中东乐器即兴演奏的脑电图关联
Front Psychol. 2021 Oct 4;12:701761. doi: 10.3389/fpsyg.2021.701761. eCollection 2021.

本文引用的文献

5
EEG Abnormalities in Children with Speech and Language Impairment.语言和言语障碍儿童的脑电图异常
J Clin Diagn Res. 2015 Jul;9(7):CC04-7. doi: 10.7860/JCDR/2015/13920.6168. Epub 2015 Jul 1.
6
Mental Imagery: Functional Mechanisms and Clinical Applications.心理意象:功能机制与临床应用。
Trends Cogn Sci. 2015 Oct;19(10):590-602. doi: 10.1016/j.tics.2015.08.003.
9

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验