Department of Neurophysiology, Institute of Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany.
Ellergy, Odense, Denmark.
Sci Rep. 2024 Apr 17;14(1):8853. doi: 10.1038/s41598-024-59068-6.
Individual testing of samples is time- and cost-intensive, particularly during an ongoing pandemic. Better practical alternatives to individual testing can significantly decrease the burden of disease on the healthcare system. Herein, we presented the clinical validation of Segtnan™ on 3929 patients. Segtnan™ is available as a mobile application entailing an AI-integrated personalized risk assessment approach with a novel data-driven equation for pooling of biological samples. The AI was selected from a comparison between 15 machine learning classifiers (highest accuracy = 80.14%) and a feed-forward neural network with an accuracy of 81.38% in predicting the rRT-PCR test results based on a designed survey with minimal clinical questions. Furthermore, we derived a novel pool-size equation from the pooling data of 54 published original studies. The results demonstrated testing capacity increase of 750%, 60%, and 5% at prevalence rates of 0.05%, 22%, and 50%, respectively. Compared to Dorfman's method, our novel equation saved more tests significantly at high prevalence, i.e., 28% (p = 0.006), 40% (p = 0.00001), and 66% (p = 0.02). Lastly, we illustrated the feasibility of the Segtnan™ usage in clinically complex settings like emergency and psychiatric departments.
对样本进行个体检测既耗时又昂贵,尤其是在持续大流行期间。更好的替代个体检测的实用方法可以显著减轻医疗保健系统的疾病负担。在此,我们对 3929 名患者进行了 Segtnan™ 的临床验证。Segtnan™ 可作为一种移动应用程序,它采用了一种人工智能集成的个性化风险评估方法,以及一种新颖的数据驱动的生物样本汇集方程。该人工智能是从 15 种机器学习分类器(最高准确率为 80.14%)和一种前馈神经网络(准确率为 81.38%)之间的比较中选择的,用于根据基于最小临床问题的设计调查预测 rRT-PCR 测试结果。此外,我们从 54 篇已发表的原始研究的汇集数据中得出了一个新的汇集大小方程。结果表明,在流行率分别为 0.05%、22%和 50%的情况下,检测能力分别增加了 750%、60%和 5%。与 Dorfman 方法相比,我们的新方程在高流行率时显著节省了更多的测试,即 28%(p=0.006)、40%(p=0.00001)和 66%(p=0.02)。最后,我们说明了 Segtnan™ 在急诊和精神科等临床复杂环境中使用的可行性。