Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
Department of Forensic Medicine, Chongqing Medical University, Chongqing, 400016, China.
J Nanobiotechnology. 2024 Apr 17;22(1):189. doi: 10.1186/s12951-024-02445-0.
Although gene expression signatures offer tremendous potential in diseases diagnostic and prognostic, but massive gene expression signatures caused challenges for experimental detection and computational analysis in clinical setting. Here, we introduce a universal DNA-based molecular classifier for profiling gene expression signatures and generating immediate diagnostic outcomes. The molecular classifier begins with feature transformation, a modular and programmable strategy was used to capture relative relationships of low-concentration RNAs and convert them to general coding inputs. Then, competitive inhibition of the DNA catalytic reaction enables strict weight assignment for different inputs according to their importance, followed by summation, annihilation and reporting to accurately implement the mathematical model of the classifier. We validated the entire workflow by utilizing miRNA expression levels for the diagnosis of hepatocellular carcinoma (HCC) in clinical samples with an accuracy 85.7%. The results demonstrate the molecular classifier provides a universal solution to explore the correlation between gene expression patterns and disease diagnostics, monitoring, and prognosis, and supports personalized healthcare in primary care.
虽然基因表达特征在疾病诊断和预后方面具有巨大的潜力,但大量的基因表达特征给临床环境中的实验检测和计算分析带来了挑战。在这里,我们引入了一种通用的基于 DNA 的分子分类器,用于分析基因表达特征并生成即时的诊断结果。分子分类器从特征转换开始,使用模块化和可编程的策略来捕获低浓度 RNA 的相对关系,并将其转换为通用编码输入。然后,DNA 催化反应的竞争抑制作用根据输入的重要性为不同的输入严格分配权重,接着进行求和、消去和报告,以准确实现分类器的数学模型。我们通过利用 miRNA 表达水平在临床样本中对肝细胞癌(HCC)的诊断来验证整个工作流程,准确率为 85.7%。结果表明,分子分类器为探索基因表达模式与疾病诊断、监测和预后之间的相关性提供了一种通用的解决方案,并支持初级保健中的个性化医疗。
J Nanobiotechnology. 2024-4-17
PLoS One. 2011-7-28
World J Gastroenterol. 2019-1-14
J Nanobiotechnology. 2025-9-1
Mol Cancer. 2024-9-6
Adv Sci (Weinh). 2023-7
Nat Nanotechnol. 2023-6
Sci Adv. 2022-11-25
Nat Commun. 2022-9-27
Intensive Care Med. 2022-9
Nat Ecol Evol. 2022-7
Nat Commun. 2021-2-18
Nat Nanotechnol. 2020-5-25