Suppr超能文献

基于金字塔视觉变换器和残差块的息肉分割用于实时内窥镜成像

Segmentation of polyps based on pyramid vision transformers and residual block for real-time endoscopy imaging.

作者信息

Nachmani Roi, Nidal Issa, Robinson Dror, Yassin Mustafa, Abookasis David

机构信息

Department of Electrical and Electronics Engineering, Ariel University, Ariel 407000, Israel.

Department of Surgery, Hasharon Hospital, Rabin Medical Center, affiliated with Tel Aviv, University School of Medicine, Petah Tikva, Israel.

出版信息

J Pathol Inform. 2023 Jan 26;14:100197. doi: 10.1016/j.jpi.2023.100197. eCollection 2023.

Abstract

Polyp segmentation is an important task in early identification of colon polyps for prevention of colorectal cancer. Numerous methods of machine learning have been utilized in an attempt to solve this task with varying levels of success. A successful polyp segmentation method which is both accurate and fast could make a huge impact on colonoscopy exams, aiding in real-time detection, as well as enabling faster and cheaper offline analysis. Thus, recent studies have worked to produce networks that are more accurate and faster than the previous generation of networks (e.g., NanoNet). Here, we propose ResPVT architecture for polyp segmentation. This platform uses transformers as a backbone and far surpasses all previous networks not only in accuracy but also with a much higher frame rate which may drastically reduce costs in both real time and offline analysis and enable the widespread application of this technology.

摘要

息肉分割是早期识别结肠息肉以预防结直肠癌的一项重要任务。为了解决这一任务,人们采用了许多机器学习方法,取得的成功程度各不相同。一种既准确又快速的成功息肉分割方法可能会对结肠镜检查产生巨大影响,有助于实时检测,并能实现更快、更便宜的离线分析。因此,最近的研究致力于开发比上一代网络(如NanoNet)更准确、更快的网络。在此,我们提出用于息肉分割的ResPVT架构。该平台以Transformer作为主干,不仅在准确性上远远超过了之前所有的网络,而且帧率更高,这可能会大幅降低实时和离线分析的成本,并使这项技术得到广泛应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97bd/9945716/b7b5196229a1/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验